Synthesis of Fluorinated 1,2,3-Butatrienes from α-Halovinyl Organometallic Reagents

Peter A. Morken, Patrick C. Bachand, Dale C. Swenson, and Donald J. Burton*
Contribution from the Department of Chemistry, University of Iowa, Iowa City, Iowa 52242
Received February 8, 1993

Abstract

The thermal stability and dimerization reaction of fluorinated α-halovinyl zinc and copper reagents, $\mathrm{RR}^{\prime} \mathrm{C}=\mathrm{CYM}(\mathrm{Y}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br} ; \mathrm{M}=\mathrm{ZnX}, \mathrm{Cu})$, have been explored in detail. Dimerization of these vinyl carbenoids to butatrienes occurred when R was an aromatic $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right.$ or $\left.\mathrm{C}_{6} \mathrm{~F}_{5}\right)$ and R^{\prime} was a perfluoroalkyl group $\left(\mathrm{CF}_{3}, \mathrm{C}_{2} \mathrm{~F}_{5}, \mathrm{C}_{3} \mathrm{~F}_{7}\right)$. The role of the α-halogen was determined: the α-F vinyl copper reagent ($\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{\prime}=\mathrm{CF}_{3}$) decomposed by oxidative dimerization to 1,3 -dienes while the α - Br and - Cl copper reagents dimerized to butatrienes. The fluorinated butatrienes prepared in this study, (E) - and $(Z)-\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{CR}_{1} \mathrm{R}_{2}\left(\mathrm{R}_{1}=\mathrm{CF}_{3}, \mathrm{R}_{2}=\mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{R}_{1}=\mathrm{C}_{2} \mathrm{~F}_{5}, \mathrm{R}_{2}=\mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{R}_{1}=\right.$ $n-\mathrm{C}_{3} \mathrm{~F}_{7}, \mathrm{R}_{2}=\mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{R}_{1}=\mathrm{CF}_{3}, \mathrm{R}_{2}=\mathrm{C}_{6} \mathrm{~F}_{5}$) are available on a multigram scale and readily obtained with high isomeric purity. The geometry of one member of each isomeric pair of butatrienes was characterized by X-ray crystallography. The mechanism of the dimerization reaction has been determined to be a nucleophilic displacement $/ \beta$-elimination process. Diels-Alder (1,2-addition), bromination (1,2-addition), and isomerization reactions are described.

Introduction

Cumulated butatrienes are an interesting class of compounds. The 1,2,3-butatriene moiety has recently been utilized as an intermediate for the preparation of highly unsaturated compounds including radialenes, ${ }^{1}$ halo enynes, ${ }^{2} 1,3$-diynes, ${ }^{3}$ cyclopentenynes, ${ }^{4}$ and hexa-1,5-dien-3-ynes. ${ }^{5}$ The cumulene's rigid, conjugated backbone has potential in material science, and some butatrienes have desirable amphoteric properties. ${ }^{6}$ The coordination chemistry of cumulenes and transition metals is also of interest. ${ }^{7}$ Reports of fluorinated butatrienes, however, have been scarce, even though the incorporation of fluorine into molecules and materials is known to enhance biological activities ${ }^{8}$ and thermal properties, ${ }^{9}$ respectively. The only fluorinated butatriene to be prepared on a scale amenable to further study is $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{C}(\mathrm{Ph})_{2}{ }^{10,11}$ The simplest example, $\mathrm{CF}_{2}=\mathrm{C}=\mathrm{C}=\mathrm{CF}_{2}{ }^{12}$ explodes when liquefied (bp $5{ }^{\circ} \mathrm{C}$). $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{C}\left(\mathrm{CF}_{3}\right)_{2}{ }^{13}$ and $\left[t-\mathrm{Bu}_{2} \mathrm{C}=\right.$ $\left.\mathrm{C}=\mathrm{C}=\mathrm{CCF}_{3}\right]_{2}{ }^{14}$ have been reported, but the complexity of their syntheses has precluded additional study. Hartgraves ${ }^{15}$ reported the preparation of $\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}=\mathrm{C}=\mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$ and $\mathrm{CF}_{3}\left(\mathrm{CF}_{2}\right)_{3} \mathrm{CF}_{2} \mathrm{CF}=\mathrm{C}=\mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$ by MeLi-induced elimination of HF from the parent allenes.

Our efforts have been directed at the synthesis of fluorinated building blocks, including organometallic reagents. Since fluorinated organolithium and Grignard reagents are of limited value

[^0]due to their extremely poor thermal stability, we have developed the chemistry of polyfluorinated vinyl zinc, ${ }^{16}$ cadmium, ${ }^{17}$ and copper ${ }^{18}$ reagents, which exhibit excellent thermal stability. We recently turned our attention to the preparation of fluorinated vinyl zinc and copper reagents with α-halogens other than fluorine, choosing $\mathrm{CF}_{3}(\mathrm{Ph}) \mathrm{C}=\mathrm{CYZnX}(\mathrm{Y}=\mathrm{F}, \mathrm{Br})$ as our model substrate. We were surprised to observe that, while the zinc reagent is stable with an $\alpha-\mathrm{For}-\mathrm{Br}$, the a nalogous copper reagent was only observed with an $\alpha-\mathrm{F}$: the $\alpha-\mathrm{Br}$ analog immediately dimerized to (E) - and $(Z)-\mathrm{CF}_{3}(\mathrm{Ph}) \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{C}(\mathrm{Ph}) \mathrm{CF}_{3} .{ }^{19}$ We now report the details of our study of fluorinated α-halovinyl organometallic compounds.

Results

Preparation of 1,1-Dihaloalkenes. The 1,1-dibromoalkenes were prepared by Appel reaction of the requisite ketone with $\mathrm{CBr}_{4} / \mathrm{PPh}_{3}$ (Table I). ${ }^{20} \mathrm{PhCF}=\mathrm{CBr}_{2}$ (12) was prepared by the sequence ${ }^{21}$ in eq 1 , as the Appel method fails with benzoyl fluoride.

The $1-\mathrm{Br}, 1-\mathrm{Y}(\mathrm{Y}=\mathrm{F}, \mathrm{Cl})$ precursors were prepared by Appel reaction of $\mathrm{CF}_{3} \mathrm{COPh}$ with $\mathrm{CBr}_{3} \mathrm{Y}(\mathrm{Y}=\mathrm{F}, \mathrm{Cl}) . \mathrm{CF}_{3}(\mathrm{Ph}) \mathrm{C}=$ CFBr^{23} was synthesized selectively from $\mathrm{CFBr}_{3} / \mathrm{PPh}_{3} / \mathrm{CF}_{3} \mathrm{COPh}$. The a nalogous reaction was utilized to prepare $\mathrm{CF}_{3}(\mathrm{Ph}) \mathrm{C}=\mathrm{CClBr}$ (13), although halogen extraction from $\mathrm{CClBr}_{3}{ }^{24}$ by PPh_{3} was

[^1]Table I. Preparation of 1,1-Dibromoalkenes

compd	R	R^{\prime}	yield (\%)
$\mathbf{1}$	CF_{3}	$\mathrm{C}_{6} \mathrm{H}_{5}$	94
$\mathbf{2}$	$\mathrm{C}_{2} \mathrm{~F}_{5}$	$\mathrm{CBr}_{6}+2 \mathrm{H}_{5}$	67
$\mathbf{3}$	$\mathrm{C}_{3} \mathrm{~F}_{7}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	88
$\mathbf{4}$	CF_{3}	$\mathrm{C}_{6} \mathrm{~F}_{5}$	76
$\mathbf{5}$	CF_{3}	CF_{3}	52
$\mathbf{6}$	$\mathrm{CF}_{2} \mathrm{Cl}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	67
$\mathbf{7}$	$\mathrm{CF}_{2} \mathrm{H}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	55
$\mathbf{8}$	CF_{3}	H	26
$\mathbf{9}$	CF_{3}	$\mathrm{CO}_{2} \mathrm{Et}$	26

not selective: a $1: 1$ ratio of $13: 1$ was obtained (eq 2). ${ }^{25.26}$ However, chloroalkene 13 was isolable by preparative gas chromatography.

Metalation of 1,1-Dihaloalkenes. The 1,1-dibromoalkenes were metalated with acid-washed zinc metal in DMF solvent. $\mathrm{CF}_{3}(\mathrm{Ph}) \mathrm{C}=\mathrm{CYBr}(\mathrm{Y}=\mathrm{Cl}, \mathrm{F})$ also inserted zinc smoothly into the $\mathrm{C}-\mathrm{Br}$ bond. Typical conditions for the metalation involved stirring a mixture of the 1,1 -dihaloalkene, zinc, and a catalytic amount of mercuric chloride initiator in DMF solvent under N_{2} for $1-24 \mathrm{~h}$ at room temperature. Attempts to prepare a 1,1 bis(zinc) reagent at room temperature were not successful, and treatment with excess zinc at elevated temperatures $\left(60-80^{\circ} \mathrm{C}\right)$ resulted in decomposition, except in the case of $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}=\mathrm{CBr}_{2}$ (5), which gave $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}=\mathrm{C}(\mathrm{ZnX})_{2}$ (14) (eq 3).

The zinc reagents were characterized by ${ }^{19} \mathrm{~F}$ NMR analysis and hydrolysis experiments. In some instances, the stereochemistry ${ }^{27}$ of the zinc reagents could be determined by examination of the coupling constants ${ }^{28}$ of the hydrolysis products (Table II). For example, after treatment of $\mathrm{CF}_{2} \mathrm{H}(\mathrm{Ph}) \mathrm{C}=\mathrm{CBr}_{2}$ (7) with Zn in DMF, two new signals (85:15), each with small downfield shoulders, were observed by ${ }^{19} \mathrm{~F}$ NMR analysis (Scheme I). Addition of ZnBr_{2} to the NMR sample caused the small downfield shoulders to decrease in intensity, prompting their assignment as the bis reagents, $\left[\mathrm{CF}_{2} \mathrm{H}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{CBr}\right]_{2} \mathrm{Zn}$. After hydrolysis of the sample, two signals in a $85: 15$ ratio were observed by ${ }^{19} \mathrm{~F}$ NMR analysis. Isolation of the isomeric mixture and a nalysis by GC-MS confirmed the presence of (E)- and (Z) $-\mathrm{CF}_{2} \mathrm{H}-$ $(\mathrm{Ph}) \mathrm{C}=\mathrm{CHBr}(\mathbf{2 0}, \mathbf{2 1})$. Examination of the coupling constants
(25) In order to determine if the poor selectivity was occurring during the initial halophilic attack step ${ }^{26}$ of the process, the reaction was repeated in the presence of a proton source, ethanol, at $-78^{\circ} \mathrm{C}$:

These results imply that there is moderate selectivity in the initial halophilic attack step. Subsequent halogen abstraction from $\left[\mathrm{Ph}_{3} \mathrm{PCBr}_{2} \mathrm{Cl}\right]+\mathrm{Br}$ exhibits little discrimination between between chlorine and bromine.
(26) Burton, D. J. Actual. Chim. 1987, 142-146.
(27) The stereochemistry of the metalation reaction of $\mathrm{RR}^{\prime} \mathrm{C}=\mathrm{CBr}_{2}$ compounds with $n-\mathrm{BuLi}$ and $n-\mathrm{Bu}_{3} \mathrm{ZnLi}$ was recently reported, and metal/ halogen exchange was found to take place preferentially at the sterically more hindered bromine atom of $\mathrm{RR}^{\prime} \mathrm{C}=\mathrm{CBr}_{2}$. However, no such trend was apparent in this study; see: Harada, T.; Katsuhira, T.; Oku, A. J. Org. Chem. 1992, 57, 5805-5807.
'(28) Emsley, J. W.; Phillips, L.; Wray, V. Prog. Nucl. Magn. Reson. Spectrosc. 1976, 10, 83-756.

Table II. Ratio of Zinc Reagent Isomers ${ }^{a}$

	$\left\langle_{\mathrm{Br}}^{\mathrm{Br}} \frac{2}{\mathrm{D}}\right.$		$<_{\mathrm{Br}}^{\mathrm{ZnX}}+$	
compd	R	R^{\prime}	\%	\%
37, 38	CF_{3}	$\mathrm{C}_{6} \mathrm{H}_{5}$	85^{b}	15 (86:14) ${ }^{\text {c }}$
- 16	$\mathrm{CF}_{2} \mathrm{Cl}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	97 (68:32)	3^{6}
17	$\mathrm{CF}_{2} \mathrm{H}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	85 (87:13)	15 (86:14)
18	CF_{3}	H	29 (80:20)	71 (80:20)
19	F	$\mathrm{C}_{6} \mathrm{H}_{5}$	0	$100^{\text {b }}$

${ }^{a}$ The isomers of the zinc reagents not included in this table were not discernible by NMR. ${ }^{b}$ Mono and bis signals overlap. ${ }^{c}$ (Mono:bis) mono, $X=B r ;$ bis, $X=R R^{\prime} C=C B r$.

Scheme I

Scheme II

by ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR revealed that the major isomer (85%) exhibited a ${ }^{4} \mathrm{~J}_{\mathrm{CF}_{2} \mathrm{H}}$ value of 2.7 Hz , which is assigned to $20 .{ }^{29}$

The (E)-zinc reagent (16) derived from $\mathrm{CF}_{2} \mathrm{Cl}(\mathrm{Ph}) \mathrm{C}=\mathrm{CBr}_{2}$ (6) was formed in DMF solvent, although it decomposed to (E)$\mathrm{CF}_{2} \mathrm{Cl}(\mathrm{Ph}) \mathrm{C}=\mathrm{CHBr}(22)$ after only 1 day at room temperature. Addition of the strongly coordinating $N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine (TMEDA) ligand ${ }^{30}$ increased the thermal stability of zinc reagent 16 , and only $7-10 \%$ of 22 was observed after 24 h at room temperature. The insertion was 97% stereoselective for the Br cis to the $\mathrm{CF}_{2} \mathrm{Cl}$ group in 6 , as determined by iodination (23) and hydrolysis (24) reactions (Scheme II).

Reaction of $\mathrm{CF}_{3}\left(\mathrm{CO}_{2} \mathrm{Et}\right) \mathrm{C}=\mathrm{CBr}_{2}$ (9) with Zn gave only complex reaction mixtures as observed by ${ }^{19} \mathrm{~F}$ NMR, and no zinc reagent was observed (hydrolysis). Reduction and Barbier-type reactions could be occurring. Treatment of 9 with t-BuLi followed by ZnI_{2} at $-78^{\circ} \mathrm{C}$ also failed to give the zinc reagent. ${ }^{31}$

Reaction of α-Halovinyl Zinc Reagents with Cuprous Bromide. Treatment of the zinc reagents listed in Table III with a catalytic amount of CuBr afforded high yields of the corresponding cumulenes in an exothermic reaction. Pure, multigram quantities

[^2] 1965, 87, 2439-2442.
(30) Jiang, B.; Xu, Y. J. Org. Chem. 1991, 56, 7336-7340.
(31) Gillet, J. P.; Sauvetre, R.; Normant, J. F. Synthesis 1986, 538-544. Morken, P. A.; Lu, H.; Nakamura, A.; Burton, D. J. Tetrahedron Lett. 1991, 32, 4271-4274.

Table III. Isolated Butatrienes

	Br	$\frac{\mathrm{Zn}}{\mathrm{DMF}}$		$\left.\begin{array}{l} \mathrm{ZnX} \\ \mathrm{Br} \end{array}\right]$	$\xrightarrow{\stackrel{\text { cat. }}{\mathrm{CuBr}}} \mathrm{R}^{1}$	
compd	R^{1}	R^{2}	R^{3}	R^{4}	$\lambda_{\text {max }}(\epsilon)^{a}$	structure determination
25	CF_{3}	$\mathrm{C}_{6} \mathrm{H}_{5}$	CF_{3}	$\mathrm{C}_{6} \mathrm{H}_{5}$	376 (27000)	X-ray
26	CF_{3}	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	CF_{3}	388 (32 000)	
27	$\mathrm{C}_{2} \mathrm{~F}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{2} \mathrm{~F}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	376 (21 200)	
28	$\mathrm{C}_{2} \mathrm{~F}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{2} \mathrm{~F} 5$	377 (37 600)	X-ray
29	$\mathrm{C}_{3} \mathrm{~F}_{7}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{3} \mathrm{~F}_{7}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	378 (27 500)	
30	$\mathrm{C}_{3} \mathrm{~F}_{7}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{3} \mathrm{~F}_{7}$	380 (36 800)	X-ray
31	CF_{3}	$\mathrm{C}_{6} \mathrm{~F}_{5}$	CF_{3}	$\mathrm{C}_{6} \mathrm{~F}_{5}$	326 (7000)	
32	CF_{3}	$\mathrm{C}_{6} \mathrm{~F}_{5}$	$\mathrm{C}_{6} \mathrm{~F}_{5}$	CF_{3}	331 (17400)	X-ray

${ }^{a} \lambda_{\text {max }}, \mathrm{nm}, \mathrm{CH}_{3} \mathrm{CN}\left(\epsilon, 1 \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$.
of (E) - and $(Z)-\mathrm{R}(\mathrm{Ph}) \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{C}(\mathrm{Ph}) \mathrm{R}\left(\mathrm{R}=\mathrm{CF}_{3}, \mathrm{C}_{2} \mathrm{~F}_{5}, \mathrm{C}_{3} \mathrm{~F}_{7}\right)$ (25-30) were readily isolated by silica gel flash chromatography. Unfortunately, (E) - and $(Z)-\mathrm{CF}_{3}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{CF}_{3}$ $(31,32)$ eluted simultaneously and could not be separated by this technique. However, fractional recrystallization from pentane gave pure 32. Subsequent recrystallizations afforded 31 in 89% isomeric purity.

The geometries of $25,{ }^{19} \mathbf{2 8},{ }^{32} \mathbf{3 0},{ }^{32}$ and $32{ }^{32}$ were unambiguously determined by X-ray crystallography. The trans isomers all exhibited $\lambda_{\max }$ at longer wavelengths with a larger extinction coefficient, ϵ, than their cis counterparts. The $\lambda_{\max (\text { Irans })}>\lambda_{\max (c i s)}$ trend has been well documented for stilbenes. ${ }^{33}$ However, the only reported UV data to our knowledge of an $R^{\prime} C=C=$ $\mathbf{C =}=\mathbf{C R R}^{\prime}\left(\mathbf{R}=\right.$ alkyl, $\mathbf{R}^{\prime}=$ aryl) butatriene was consistent with the ϵ but not the $\lambda_{\max }$ trend: $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{\prime}=t-\mathrm{Bu}$ (cis $\lambda_{\max }=$ $332 \mathrm{~nm}, \epsilon=16300$) (trans $\lambda_{\max }=321 \mathrm{~nm}, \epsilon=20200$). ${ }^{34}$

Surprisingly, substitution of $\mathrm{CF}_{2} \mathrm{H}$ for a CF_{3} group had a pronounced effect on the product distribution: only traces (4\%) of the dimer $\mathrm{CF}_{2} \mathrm{H}(\mathrm{Ph}) \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{C}\left(\mathrm{Ph}^{2}\right) \mathrm{CF}_{2} \mathrm{H}$ (54) were isolated, and the major products were $\left[\mathrm{CF}_{2} \mathrm{H}(\mathrm{Ph}) \mathrm{C}=\mathrm{C}\right]_{4}$ (55) isomers (Scheme VI). The tetramer assignment was made on the basis of HRMS and contains more than one isomer, on the basis of the broad streak on a TLC plate and the complex ${ }^{19} \mathrm{~F}$ NMR spectrum. Fractional recrystallization techniques failed to purify a single isomer.

Treatment of $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}=\mathrm{CBrZnX}, \mathrm{CF}_{2} \mathrm{Cl}(\mathrm{Ph}) \mathrm{C}=\mathrm{CBrZnX}$, or $\mathrm{CF}_{3} \mathrm{CH}=\mathrm{CBr} \mathrm{ZnX}$ with CuBr under a variety of conditions afforded complex reaction mixtures as determined by ${ }^{19} \mathrm{~F}$ NMR, and no butatrienes or alkynes were detected in the reaction mixtures. Treatment of $(Z)-\mathrm{PhCF}=\mathrm{CBrZnX}$ with CuBr and ${ }^{19} \mathrm{~F}$ NMR analysis of the reaction mixture revealed $90 \%(E)$ $\mathrm{PhCF}=\mathrm{CHBr}$ as well as small amounts of several other unidentified products.

The role of the α-halogen was also examined in our model substrate, $\mathrm{CF}_{3}(\mathrm{Ph}) \mathrm{C}=\mathrm{CYZnX}(\mathrm{Y}=\mathrm{Br}, \mathrm{Cl}, \mathrm{F})(33-38)$. After treatment with CuBr , the $\alpha-\mathrm{Cl}$ analog was found to decompose in a manner similar to the $\alpha-\mathrm{Br}$ analog, although the dimerization occurred at a slower rate (Scheme III). The α-F copper reagent, however, underwent oxidative dimerization as its major decomposition pathway.

Thermal decomposition ($50-60^{\circ} \mathrm{C}$) of the α-halo zinc reagents in the $\mathrm{CF}_{3}(\mathrm{Ph}) \mathrm{C}=\mathrm{CYZnX}(\mathrm{Y}=\mathrm{Br}, \mathrm{Cl}, \mathrm{F})$ series was also studied. The $\alpha-\mathrm{Br}$ and -Cl analogs decomposed by dimerization to 25,26, and small amounts of $\mathrm{CF}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{CHY}(\mathrm{Y}=\mathrm{Cl}, \mathrm{Br})$ while the $\alpha-\mathrm{F}$ member gave only $\mathrm{CF}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{CHF}$.

Mechanism of Dimerization. Mechanisticstudies ${ }^{35}$ of reactions with fluorinated substrates offer many advantages. Most im-

[^3]Scheme III

portantly, the 100% natural abundance of the NMR active ${ }^{19} \mathrm{~F}$ nuclei in conjunction with its broad chemical shift range (>200 $\mathrm{ppm})$ makes ${ }^{19} \mathrm{~F}$ NMR a very sensitive probe. A practical advantage is the fact that deuterated solvents are not necessary. A low-temperature NMR study of the CuBr -induced decomposition of $\mathrm{CF}_{3}(\mathrm{Ph}) \mathrm{C}=\mathrm{CY} \mathrm{ZnX}(\mathrm{Y}=\mathrm{Br}, \mathrm{Cl})$ was undertaken. Addition of 1 equiv of CuBr to a $-45{ }^{\circ} \mathrm{C} 0.25 \mathrm{M}$ solution of $\mathrm{CF}_{3}(\mathrm{Ph}) \mathrm{C}=\mathrm{CBrZnX}(37,38)$ and immediate observation by ${ }^{19} \mathrm{~F}$ NMR ($-45{ }^{\circ} \mathrm{C}$ probe temperature) revealed (E)- and (Z)$\mathrm{CF}_{3}(\mathrm{Ph}) \mathrm{C}=\mathrm{CBrCu}(43,44),(E)-$ and $(Z)-\mathrm{CF}_{3}(\mathrm{Ph}) \mathrm{C}=\mathrm{C}=$ $\mathrm{C}=\mathrm{C}(\mathrm{Ph}) \mathrm{CF}_{3}(25,26)$, and signals attributed to isomers of 46 ($\mathrm{Y}=\mathrm{Br}$) (vide infra). After warming to $25^{\circ} \mathrm{C}, 25$ and 26 were the sole components of the reaction mixture. The CuBr -induced decomposition of a 0.25 M solution of 37 and 38 in DMF/THF (1:1) was studied at $-78^{\circ} \mathrm{C}$. However, at this temperature the CuBr was not soluble. At temperatures where the CuBr was soluble ($\sim-50^{\circ} \mathrm{C}$), the dimerization reaction occurred. Utilization of $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}$ did not alleviate the solubility problem at low temperature.
The intermediates, however, were observed cleanly when the less labile $\alpha-\mathrm{Cl}$ zinc reagent was employed. A 0.25 M solution of (E) - and $(Z)-\mathrm{CF}_{3}(\mathrm{Ph}) \mathrm{C}=\mathrm{CClZnX}(35,36)$ was treated with 1 equiv of CuBr and monitored by ${ }^{19} \mathrm{~F}$ NMR at $-45^{\circ} \mathrm{C}$ (Figure 1). After 1 min , two new peaks assigned to $\alpha-\mathrm{Cl}$ copper reagents 41 and 42 were observed by ${ }^{19} \mathrm{~F}$ NMR, as well as unreacted zinc reagent (64\% conversion). It appears that $(Z)-\mathrm{CF}_{3}(\mathrm{Ph}) \mathrm{C}=$ $\mathrm{C}(\mathrm{Cl}) \mathrm{ZnX}(36)$ underwent metathesis reaction at a slightly faster rate than its E counterpart (35) (eq 4).

After 5 minat $-45^{\circ} \mathrm{C}$, zinc reagents 35 and 36 were consumed, and copper reagents $\mathbf{4 1}$ and $\mathbf{4 2}$ accounted for 78% of the fluorine by integration. Four broad singlets (22%) in roughly a $1: 2: 2: 1$ pattern had appeared ($\delta-53.9,-54.3,-54.7,-55.2$, at $-45^{\circ} \mathrm{C}$), which are assigned to the isomers of $\mathrm{CF}_{3}(\mathrm{Ph}) \mathrm{C}=\mathrm{C}(\mathrm{Cl}) \mathrm{C}(\mathrm{Cu})$ $=\mathrm{C}(\mathrm{Ph}) \mathrm{CF}_{3}(\mathbf{4 6}, \mathrm{Y}=\mathrm{Cl}) .{ }^{36}$ After the probe was warmed to 0 ${ }^{\circ} \mathrm{C}$ over a $35-\mathrm{min}$ period, $\alpha-\mathrm{Cl}$ copper reagents 41 and 42 were no longer observed by ${ }^{19} \mathrm{~F}$ NMR analysis and dienyl isomers 46 ($\mathrm{Y}=\mathrm{Cl}$) accounted for 99% of the fluorine by integration. The intermediates at this point were studied by further warming and by trapping with HCl . When the solution was warmed to room temperature, only butatrienes $\mathbf{2 5}$ and $\mathbf{2 6}$ were observed by ${ }^{19} \mathrm{~F}$ NMR analysis.
(36) These singlets could not be assigned to any of the four possible diene isomers, each with two unique CF_{3} 's. It could not be determined if only two dienyl cuprate isomers had formed, or if three or four isomers had formed and the chemical shifts of several trifluoromethyl groups had overlapped.

Figure 1. Low-temperature ${ }^{19} \mathrm{FNMR}$ study of $\mathrm{CF}_{3}(\mathrm{Ph}) \mathrm{C}=\mathrm{CClCu}(41,42)$ decomposition.

Scheme IV

The trapping experiment was carried out by first treating an NMR sample of α-chloro zinc reagents 35 and 36 with 1 equiv of CuBr at $-45^{\circ} \mathrm{C}$ and then warming to $0^{\circ} \mathrm{C}$ over a $35-\mathrm{min}$ period, affording $\mathbf{4 6}(\mathrm{Y}=\mathrm{Cl})$. Addition of several drops of $\mathrm{HCl} /$ $\mathrm{Et}_{2} \mathrm{O}$ and examination by GC-MS revealed two isomers of $\mathrm{CF}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{CClCH}=\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CF}_{3}$ (47), and no butatrienes $(25,26)$ were detected. It could not be determined whether only two isomers had formed or if more than two isomers had formed and were eluting simultaneously during GC-MS analysis. This experiment offers direct proof of the intermediacy of 46 in the dimerization reaction (Scheme IV).

Thermal Isomerization of Butatrienes. The thermal isomerization of the isolated butatrienes was examined in triglyme solvent. In the cases of $\mathbf{2 5 - 3 0}$, no isomerization was observed up to $50^{\circ} \mathrm{C}$, and thermodynamic equilibrium was achieved after 6 h at $110^{\circ} \mathrm{C}$ (Table IV).

Diels-Alder Reaction of (E) - and (Z)-CF3 $(\mathbf{P h}) \mathrm{C}=$ $\mathrm{C}=\mathrm{C}=\mathrm{C}(\mathbf{P h}) \mathrm{CF}_{3}(25,26)$. The Diels-Alder reaction of butatrienes $\mathbf{2 5}$ and 26 with cyclopentadiene was found to proceed under relatively mild conditions: $55^{\circ} \mathrm{C} / 4 \mathrm{~h} /$ toluene. These observations were particularly advantageous because no thermal isomerization (Table IV) has been observed under these conditions. Treatment of $\mathbf{2 5}$ with cyclopentadiene gave two isomers in a 1.4:1

Table IV. Thermal and Photochemical Isomerization of Butatrienes ${ }^{a}$

R	Ar	$E: Z$
CF_{3}	$\mathrm{C}_{6} \mathrm{H}_{5}$	60:40
$\mathrm{C}_{2} \mathrm{~F}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	48:52
$\mathrm{C}_{3} \mathrm{~F}_{7}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	50:50
CF_{3}	$\mathrm{C}_{6} \mathrm{~F}_{5}$	b

${ }^{a} 110^{\circ} \mathrm{C} / 6 \mathrm{~h}$ triglyme. ${ }^{b}$ Decomposes in triglyme at $50^{\circ} \mathrm{C}$.
Scheme V

ratio as determined by ${ }^{19}$ F NMR (eq 5). Although inseparable by silica gel chromatography, 48 and 48^{\prime} could be isolated by preparative HPLC. The cycloaddition was regioselective for $1,2-$

(48.48)
attack at the butatriene, as the isomers exhibited characteristic allenic ${ }^{13} \mathrm{C}$ NMR signals at $\delta 199.8\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.3 \mathrm{~Hz}\right.$) for the major isomer (58%) and $\delta 200.2$ ($\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}$) for the minor isomer (42\%) as well as FTIR stretches at 1965.2 and 1965.4 cm^{-1}. Diels-Alder reaction of $\mathbf{2 6}$ and cyclopentadiene gave two allenic isomers in a 1.3:1 ratio (eq 6). Although these two isomers were not separated, ${ }^{13} \mathrm{C}$ NMR and GC-MS analysis of the mixture demonstrated the presence of two allenes $\left(49,49^{\prime}\right)$, which were distinguishable from 48 and $\mathbf{4 8}^{\prime}$.

Reaction of (E) - and $(Z)-\mathrm{CF}_{3}(\mathrm{Ph}) \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{C}\left(\mathrm{Ph}_{\mathbf{~}}\right) \mathrm{CF}_{3}$ (25, 26) with Br_{2}. Treatment of pure 25 or 26 with Br_{2} resulted in 1,2 -addition to the terminal double bond as evidenced by the characteristic ${ }^{13} \mathrm{C}$ NMR shifts of the central allenic carbons of 50. Further, identical mixtures of diastereomers were isolated after reaction of pure $\mathbf{2 5}$ or $\mathbf{2 6}$ with Br_{2} (Scheme V). Addition of bromine was regiospecific but not stereospecific.

Discussion

The mechanism of α-halovinyl organometallic (vinyl carbenoid) dimerization has been reported to occur by a coupling ${ }^{37}$ / elimination mechanism and not a free carbene intermediate
(37) The first step of the proposed mechanism, nucleophilic displacement of a vinyl halogen α to a metal, has been studied in detail: Duraisamy, M.; Walborsky, H. M. J. Am. Chem. Soc. 1984, 106, 5035-5037.

Scheme VI

(Scheme IV). ${ }^{38}$ However, the experimental evidence to date has mainly been indirect: carbene traps rarely intercept intermediates, and when they do, the yields have been very low. ${ }^{39}$ The observation of the intermediates in the dimerization reaction by ${ }^{19} \mathrm{~F}$ NMR and isolation of 47 after a trapping experiment with HCl have for the first time provided direct evidence for the intermediacy of 46 . We assume that a similar mechanistic pathway is followed for the thermal dimerization of the $\alpha-\mathrm{Cl}(35,36)$ and $\alpha-\mathrm{Br}(37$, 38) zinc reagents.

The $\mathrm{Cu}(\mathrm{I})$-induced oligomerization of $\mathrm{Ph}_{2} \mathrm{C}=\mathrm{CBrLi}$ to $55\left(\mathrm{R}_{1}\right.$ $\left.=\mathrm{R}_{2}=\mathrm{Ph}\right)$ and tetraphenylbutatriene has been reported. ${ }^{40} \mathrm{~A}$ similar pathway (Scheme VI) could be occurring in the dimerization/oligomerization of $\mathrm{CF}_{2} \mathrm{H}(\mathrm{Ph}) \mathrm{C}=\mathrm{CBrZnX}$ (17) to 54 and 55, although we only have molecular formula data (HRMS) and no structural proof for the latter compound.

Treatment of 17 was surprising, since the trifluoromethyl analog $(37,38)$ gave a good yield (72%) of the butatriene. Perhaps a combination of decreased steric bulk of $\mathrm{CF}_{2} \mathrm{H}^{2} \mathrm{CF}_{3}$ and increased nucleophilicity of $\mathrm{CF}_{2} \mathrm{H}(\mathrm{Ph}) \mathrm{C}=\mathrm{CBrZnX}{ }^{41}$ enables subsequent nucleophilic attack steps of 53 to occur at a faster rate than β-elimination.
Vinyl carbenoids are well-known to undergo Fritsch-Butten-berg-Wiechell (FBW) rearrangement ${ }^{42}$ to alkynes (eq 7), although we did not detect alkynes in any of our reaction mixtures.

What factors determine which mechanism will be followed for a specific substrate? In general, lithium vinyl carbenoids undergo the FBW rearrangement ${ }^{42}$ if a vinyl, aryl, or cyclopropyl group is present and dimerize ${ }^{43}$ if two alkyl groups are present. However, vinyl copper ${ }^{6,40,44}$ carbenoids always dimerize or oligomerize, even with two alkyl groups present. While these generalizations encompass most reported examples, there is an exception: $\mathrm{CH}_{3}(\mathrm{Ph}) \mathrm{C}=\mathrm{CBrLi}$ rearranges ${ }^{45}$ to $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CPh}$ while $\mathrm{CF}_{3}-$ $(\mathrm{Ph}) \mathrm{C}=\mathrm{CBrLi}$ dimerizes to 25 and $26 .{ }^{19}$ Since the FBW rearrangement is proposed to involve an accumulation of positive
(38) Kobrich, G.; Heinemann, H.; Zundorf, W. Tetrahedron 1967, 23, 565-584. Stang, P. J. Chem. Rev. 1978, 78, 383-405.
(39) Kobrich, G.; Drischel, W. Tetrahedron 1966, 22, 2621-2636. Tatanabe, M.; Walsh, R.A.J.Am.Chem.Soc. 1963, 85, 3522-3523. Kobrich, G.; Heinemann, H. Angew. Chem., Int. Ed. Engl. 1965, 4, 594-595.
(40) Iyoda, M.; Otani, H.; Oda, M.; Kai, Y.; Baba, Y.; Kasai, N. J. Am. Chem. Soc. 1986, 108, 5371-5372.
(41) The electronegativities of the CF_{3} and $\mathrm{CF}_{2} \mathrm{H}$ groups have been calculated to be 2.99 and 2.81 , respectively: Inamoto, N.; Masuda, S. Chem. Lett. 1982, 1003-1006.
(42) For reviews see: Kobrich, G. Angew. Chem., Int. Ed. Engl. 1965, 4, 49-68. Kobrich, G. Angew. Chem., Int. Ed.Engl. 1972, 1l, 473-485. Kirmse, W. Angew. Chem., Int. Ed. Engl. 1965, 4, 1-10.
(43) Kobrich, G.; Drischel, W. Angew. Chem., Int. Ed. Engl. 1965, 4, 74-75. Kobrich, G.; Drischel, W. Tetrahedron 1966, 22, 2621-2636. Munstedt, R.; Wannagat, U.; Wrobel, D. J. Organomet. Chem. 1984, 264, 135-148; 1984, 27l, 181-190.
(44) Kunieda, T.; Takizawa, T. Chem. Pharm. Bull. 1977, 25, 1809-1810. Iyoda, M.; Otani, H.; Oda, M.; Kai, Y.; Baba, Y.; Kasai, N. J. Chem. Soc., Chem. Commun. 1986, 1794-1796.
(45) Curtin, D. Y.; Crump, J. W. J. Am. Chem. Soc. 1958, 80, 1922.
charge in the transition state, ${ }^{42}$ it is reasonable to propose that the trifluoromethyl group destabilizes ${ }^{46}$ this intermediate, allowing the dimerization reaction to occur.

The α-halogen of the fluorinated α-halovinyl copper reagents was found to affect the mechanism of decomposition. The $\alpha-\mathrm{Br}$ and -Cl vinyl copper reagents were unstable at room temperature and decomposed in an exothermic reaction to afford butatrienes in good yields. The α-F vinyl copper reagent, on the other hand, was stable at room temperature and thermally ($50-60{ }^{\circ} \mathrm{C}$) decomposed by a well-precedented ${ }^{47}$ oxidative dimerization route. We ascribe this change in mechanism to the poor leaving ability of fluoride ion.

The failure of $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}=\mathrm{CBrZnX}$ to afford an isolable butatriene after treatment with CuBr could be due to the extremely electrophilic nature of the product. For example, a sample of $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{C}\left(\mathrm{CF}_{3}\right)_{2}$ prepared by an alternative method ${ }^{48}$ was found to decompose in seconds in DMF at room temperature. However, CuBr -catalyzed decomposition of $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}=\mathrm{CBrZnX}$ in the less nucleophilic solvent triglyme still failed to afford an observable butatriene. An attempt to trap the volatile butatriene in a liquid nitrogen trap at low pressure as it was formed was also unsuccessful. It is possible that $\mathrm{CF}_{2} \mathrm{Cl}(\mathrm{Ph}) \mathrm{C}=\mathrm{CBrZnX}$ (16) also fails to dimerize cleanly because the product butatriene has an allylic chlorine that is very susceptible to nucleophilic attack.

The bromination of 25 and 26 occurred selectively at the terminal double bond of the butatriene moiety in a 1,2-fashion. ${ }^{49}$ However, 25 and 26 gave identical mixtures of diastereomeric allenes (50), which can be rationalized by invoking a cyclic bromonium ion intermediate ${ }^{50}$ (51) and backside attack by bromide ion to give the trans dibromide. However, resonance structure 52 becomes increasingly important for alkenes with aromatic substituents, due to their increased ability to stabilize a positive charge in the transition state. ${ }^{51}$ Since structure 52 has the ability to rotate about the $\mathrm{C}-\mathrm{C}$ bond that is brominated, the anti stereospecificity is lost. A similar result was reported for the bromination of (E) - and (Z)- β-methylstyrene. ${ }^{51}$

Conclusion

The chemistry of fluorinated α-halovinyl zinc and copper reagents, $\mathrm{RR}^{\prime} \mathrm{C}=\mathrm{CYM}(\mathrm{Y}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br} ; \mathrm{M}=\mathrm{ZnX}, \mathrm{Cu})$, has been explored in detail. The $\alpha-\mathrm{Cl}$ and -Br zinc reagents were stable at room temperature, while the analogous $\alpha-\mathrm{Cl}$ and -Br copper reagents dimerized to butatrienes when R was an aromatic $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right.$ or $\mathrm{C}_{6} \mathrm{~F}_{5}$) and R^{\prime} was a perfluoroalkyl group ($\mathrm{CF}_{3}, \mathrm{C}_{2} \mathrm{~F}_{5}, \mathrm{C}_{3} \mathrm{~F}_{7}$). Direct evidence for a nucleophilic attack/ β-elimination pathway for the dimerization reaction has for the first time been obtained. Introduction of substituents such as $\mathrm{CO}_{2} \mathrm{Et}, \mathrm{H}$, or CF_{3} for R , or F for R^{\prime}, did not lead to butatriene formation, and side reactions occurred. The $\alpha-\mathrm{F}$ vinyl copper reagent ($\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{\prime}=\mathrm{CF}_{3}$) decomposed by oxidative dimerization to 1,3-dienes while α - Br and -Cl copper reagents dimerized to butatrienes. This methodology offers a convenient route to multigram quantities of isomerically pure, thoroughly characterized polyfluorinated butatrienes.

Experimental Section

General. All boiling points are uncorrected. ${ }^{19} \mathrm{~F}$ NMR were recorded on a JEOL FX90Q (83.81 MHz) or Bruker AC-300 (282.44 MHz)

(46) Simmons, H. E.; Wiley, D. W. J. Am. Chem. Soc. 1960, 82, 2288-

 2296.(47) Whitesides, G. M.; Casey, C. P.; Krieger, J. K. J. Am. Chem. Soc. 1971, 93, 1379-1389. Walborsky, H. M.; Banks, R. B.; Banks, M. L. A.; Duraisamy, M. Organometallics 1982, l, 667-674.
(48) Morken, P. A. unpublished results, University of Iowa, 1991.
(49) Tetraphenylbutatriene has been reported to add Br_{2} and Cl_{2} to the internal double bond: Wolinski, J. Rocz. Chem. 1957, 31, 1189-1199.
(50) March, J. Advanced Organic Chemistry, 3rd ed.; Wiley: New York, 1985; pp 657-670.
(51) Rolston, J. H.; Yates, K. J. Am. Chem. Soc. 1969, 91, 1483-1491. Fahey, R. C.; Schneider, H. J. J. Am. Chem. Soc. 1968, 90, 4429-4434. Rolston, J. H.; Yates, K. J. Am. Chem. Soc. 1969, 9l, 1477-1483.
spectrometer, and $\left\{{ }^{1} \mathrm{H}\right\}{ }^{13} \mathrm{C}$ NMR (75.48 MHz) and ${ }^{1} \mathrm{H}$ NMR (300.17 MHz) spectra were recorded on the $\mathrm{AC}-300$ spectrometer. All samples were taken in CDCl_{3} solvent unless noted otherwise. All chemical shifts are reported in parts per million downfield (positive) of the standard: TMS for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}, \mathrm{CFCl}_{3}$ for ${ }^{19} \mathrm{~F}$ NMR. FT-IR spectra were recorded as CCl_{4} solutions and reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$. GC-MS spectra were obtained at 70 eV in the electron-impact mode. GLPC analyses were performed on a $5 \% \mathrm{OV}-101$ column with a thermal conductivity detector. High-resolution mass spectral determinations were made at the University of Iowa High Resolution Mass Spectrometry Facility or the Midwest Center for Mass Spectrometry, the latter with partial support by the National Science Foundation, Biology Division (Grant No. DIR9017262). A Varex preparative scale gas chromatograph with a $1-\mathrm{m}^{1 / 2-i n . ~ c o l u m n ~ p a c k e d ~ w i t h ~ O V 101 ~ a n d ~ a ~ B e c k m a n-338 ~ b i n a r y ~}$ gradient preparative HPLC system with a $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$ column packed with $5-\mu \mathrm{m}$ spherical C_{18} particles (Beckman) were utilized. UV measurements were made with a Hewlett-Packard 8452A diode array spectrophotometer in $\mathrm{CH}_{3} \mathrm{CN}$. A 1 -ft, silvered, vacuum-jacketed spinning band apparatus with a Teflon band (B/R 8T still) was employed. All reactions were carried out under an atmosphere of nitrogen in oven-dried glassware with magnetic stirring. DMF $\left(\mathrm{CaH}_{2}\right)$ and benzonitrile $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$ were distilled at reduced pressure. TMEDA and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were distilled at atmospheric pressure from CaH_{2}. Silica gel (EM) was $70-230-\mathrm{mesh}$ ASTM. Zinc (325 mesh, Aldrich) was activated by washing with dilute HCl and then dried in vacuo at room temperature. CuBr was treated with aqueous $\mathrm{HBr}\left(48 \% \mathrm{HBr}: \mathrm{H}_{2} \mathrm{O}=5: 2\right)$, precipitated with $\mathrm{H}_{2} \mathrm{O}$, washed with $\mathrm{H}_{2} \mathrm{O}$, acetone, and ether, and then dried in vacuo. $\mathrm{CF}_{3}-$ $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{CFBr}^{23}$ and $\mathrm{CF}_{2} \mathrm{HCOC}_{6} \mathrm{H}_{5}{ }^{52}$ were prepared by literature procedures. $\mathrm{CF}_{3} \mathrm{COC}_{6} \mathrm{~F}_{5}{ }^{53}$ was prepared by a modification of the literature procedure from $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{Li}$ and $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{CH}_{3} . \mathrm{RCOC}_{6} \mathrm{H}_{5}\left(\mathrm{R}=\mathrm{CF}_{3}, \mathrm{CF}_{2} \mathrm{Cl}\right.$, $\mathrm{C}_{2} \mathrm{~F}_{5}, n-\mathrm{C}_{3} \mathrm{~F}_{7}$) were prepared by the method of Dishart and Levine from $\mathrm{R}_{\mathrm{f}} \mathrm{CO}_{2} \mathrm{H}$ and 2 equiv of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{MgBr}$. ${ }^{54}$ All reagents were obtained from common commercial sources, except $\mathrm{CF}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{OCH}_{3}$ (Central Glass), $\mathrm{CF}_{3} \mathrm{CF}(\mathrm{OEt}) \mathrm{CO}_{2} \mathrm{Et}$ (Du Pont), and $\mathrm{CF}_{3} \mathrm{COCF}_{3}$ (Daikin).
$\mathrm{CF}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{CBr}_{2}$ (1). A 1-L flask with three necks was equipped with a Teflon-coated stir bar, septum, \mathbf{N}_{2} tee, low-temperature thermometer, triphenylphosphine ($115.6 \mathrm{~g}, 0.441 \mathrm{~mol}$), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(400$ mL) and then cooled to $-48^{\circ} \mathrm{C} . \mathrm{CBr}_{4}(73.37 \mathrm{~g}, 0.221 \mathrm{~mol}$) was added all at once via a solid addition tube. The solution immediately changed from colorless to yellow and finally to an orange color. After stirring for 30 min at $-40^{\circ} \mathrm{C}, \alpha, \alpha, \alpha$-trifluoroacetophenone ($35.02 \mathrm{~g}, 0.201 \mathrm{~mol}, 100 \%$ GLPC purity) was added via syringe, and the solution was allowed to warm to room temperature overnight. The reaction mixture was poured into a 2-L flask and steam distilled for 4 h , producing 2 L of distillate. The organic and aqueous layers of the distillate were separated, and the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered, and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed by rotary evaporation to afford the bulk of the product. The aqueous layer was extracted with ether ($3 \times 200 \mathrm{~mL}$), the organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered, and the solvent was removed by rotary evaporation. Distillation afforded 62.47 g of 1 (94%, 99.4% GLPC purity): bp $94-104^{\circ} \mathrm{C} / 11 \mathrm{mmHg} ; \mathrm{GC}-\mathrm{MS} 333$ (M+${ }^{+}+1$, 22), 331 ($\mathrm{M}^{++}+1,35$), $329\left(\mathrm{M}^{++}+1,22\right), 170(100), 151$ (44), 101 (29), 75 (59), 69 (39); FTIR 3065.4 (vw), 1585.2 (s), 1293.2 (vs), 1184.1 (vs), 784.2 (s); ${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}) $\delta 7.45-7.29(\mathrm{~m}) ;{ }^{19} \mathrm{~F}$ NMR (acetoned_{6}) $\delta-58.0(\mathrm{~s}) ;{ }^{13} \mathrm{C}$ NMR (neat) $\delta 142.3(\mathrm{q}, J=32.6 \mathrm{~Hz}$), $140.0,133.7$, 133.2, 133.0, 126.5 (q, $J=276 \mathrm{~Hz}$), 106.1 (bs).
$\mathrm{CF}_{3} \mathrm{CF}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{CBr}_{2}$ (2). Compound 2 was prepared from triphenylphosphine ($114.6 \mathrm{~g}, 0.437 \mathrm{~mol}$), $\mathrm{CBr}_{4}(73.48 \mathrm{~g}, 0.222 \mathrm{~mol}$), and $\mathrm{CF}_{3} \mathrm{CF}_{2}(\mathrm{Ph}) \mathrm{C}=\mathrm{O}(45.05 \mathrm{~g}, 0.201 \mathrm{~mol})$ by the procedure described for 1, affording 51.95 g (67% yield, 99.3% GLPC purity) of $2: \mathrm{bp} 108-109$ ${ }^{\circ} \mathrm{C} / 6-7 \mathrm{mmHg}$; FTIR 628.4 (s), 1148.3 (vs), 1155.6 (vs), 1170.2 (vs), $1321.9(\mathrm{vs}), 1493.6(\mathrm{~m}), 1600.3(\mathrm{~m}), 1806.1(\mathrm{w}), 1951.6(\mathrm{w}), 3062.3(\mathrm{w})$; GC-MS $382\left(\mathrm{M}^{++}, 15\right), 380\left(\mathrm{M}^{++}, 34\right), 378\left(\mathrm{M}^{\bullet+}, 18\right), 311(14), 231$ (11), 229 (11), 182 (16), 180 (16), 151 (100), 101 (26), 75 (23), 69 (7.9); HRMS calc for $\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{~F}_{5}{ }^{79} \mathrm{Br}^{81} \mathrm{Br} 377.8678$, obs 377.8662 ; ${ }^{1} \mathrm{H}$ NMR δ $7.16(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR $\delta-81.4(\mathrm{t}, J=3-3.5 \mathrm{~Hz}, 3 \mathrm{~F})$, $-107.1(\mathrm{q}, J=3-3.5 \mathrm{~Hz}, 2 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR $\delta 136.3,135.9(\mathrm{t}, J=23.8 \mathrm{~Hz})$, 129.5, 128.8 (overlapping carbons), $119.2(\mathrm{qt}, J=288,37.8 \mathrm{~Hz}$), 112.7 ($\mathrm{tq}, J=259,39.5 \mathrm{~Hz}$), $103.3(\mathrm{t}, J=3.5 \mathrm{~Hz}$).
$\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{CBr}_{2}$ (3). Compound 3 was prepared from triphenylphosphine ($80.3 \mathrm{~g}, 306 \mathrm{mmol}$), $\mathrm{CBr}_{4}(50.8 \mathrm{~g}, 153 \mathrm{mmol})$, and $n-\mathrm{C}_{3} \mathrm{~F}_{7} \mathrm{COPh}(37.65 \mathrm{~g}, 137.4 \mathrm{mmol}$) by the procedure described for 1 ,

[^4]affording 51.81 g (88% yield) of $3:$ bp $66-75^{\circ} \mathrm{C} / 0.5 \mathrm{mmHg}(100 \%$ GLPC pure); GC-MS $432\left(\mathrm{M}^{\bullet+}, 11\right), 430\left(\mathrm{M}^{\bullet+}, 26\right), 428\left(\mathrm{M}^{\bullet+}, 14\right), 351$ (1.1), 349 (1.1), 313 (11), 311 (26), 309 (13), 230 (10), 232 (9), 151 (100), 101 (18), 69 (11); FTIR 3064.1 (vw), 1600.1 (w), 1582.4 (w), 1445.1 (m), 1344.0 (s), 1262.4 (vs), 1229.7 (vs), 1212.6 (vs), 1188.5 (vs), 1117.7 (vs), 698.1 (s); HRMS calc for $\mathrm{C}_{11} \mathrm{H}_{5} \mathrm{~F}_{7}{ }^{79} \mathrm{Br}_{2} 427.8647$, obs 427.8629; ${ }^{1} \mathrm{H}$ NMR $\delta 7.4(\mathrm{~m}, 3 \mathrm{H}), 7.3(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR $\delta-80.9(\mathrm{t}$, $J=10 \mathrm{~Hz}, 3 \mathrm{~F}),-104.2(\mathrm{q}, J=10 \mathrm{~Hz}, 2 \mathrm{~F}),-123.2(\mathrm{~s}, 2 \mathrm{~F}) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\delta 137.0,136.4(\mathrm{t}, J=24.0 \mathrm{~Hz}$), 130.2 (overlapping carbons), 129.5, 118.6 (qt, $J=288,34.2 \mathrm{~Hz}$), $115.0(\mathrm{tt}, J=259,33 \mathrm{~Hz}$), $104.8(\mathrm{t}, J=4 \mathrm{~Hz})$.
$\mathrm{CF}_{3}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{C}=\mathrm{CBr}_{2}$ (4). Reaction of triphenylphosphine (26.22 g , $99.7 \mathrm{mmol}), \mathrm{CBr}_{4}(33.23 \mathrm{~g}, 100 \mathrm{mmol})$, and octafluoroacetophenone ($12.10 \mathrm{~g}, 45.8 \mathrm{mmol}$) was carried out as described for 1 . The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed with a rotary evaporator, and then the residue was distilled at $130^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg}$ to yield 60 g of distillate which contained $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed by rotary evaporation to afford 22 g of crude product, contaminated by CBr_{4}. The crude mixture was distilled through a Bantam-ware (Kontes) distillation apparatus with a $6-\mathrm{in}$. vacuumjacketed Vigreux column. The first fraction contained CBr_{4}, and no water was passed through the condenser as the $\mathrm{CBr}_{4}\left(\mathrm{mp} 88-90^{\circ} \mathrm{C}\right.$) distilled at $50-52^{\circ} \mathrm{C} / 43 \mathrm{mmHg}$. After all of the CBr_{4} had distilled, ice water was passed through the condenser, the pressure was lowered to 24 mmHg , and 14.69 g (76% yield, 99% GLPC pure) of $4, \mathrm{bp}$ 106-107 ${ }^{\circ} \mathrm{C} / 24 \mathrm{mmHg}$, was collected: GC-MS $422\left(\mathrm{M}^{\bullet+}, 36\right), 420\left(\mathrm{M}^{\bullet+}, 68\right)$, 418 (M•+, 38), 341 (35), 339 (34), 272 (38), 270 (37), 260 (100), 241 (56), 210 (41), 141 (65), 69 (53); FTIR 1653.8 (vw), 1503.6 (s), 1269.8 (s), 1162.4 (vs), 683.1 (m); HRMS calc for $\mathrm{C}_{9} \mathrm{~F}_{8}{ }^{79} \mathrm{Br}_{2} 417.8239$, obs 417.8257; ${ }^{19} \mathrm{~F}$ NMR $\delta-60.2$ (s, 3 F), -138.3 (m, 2 F), -150.1 (m, 2 F), $-160.6(\mathrm{~m}, 1 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR (acetone- d_{6}) $\delta 145.1(\mathrm{dm}, J=250 \mathrm{~Hz}), 144.0$ (dtt, $J=257,13.4,5.1 \mathrm{~Hz}), 139.2(\mathrm{dm}, J=250 \mathrm{~Hz}), 125.6(\mathrm{q}, J=35.9$ Hz), 122.3 ($\mathrm{q}, J=276 \mathrm{~Hz}$), 111.2 (td, $J=19,3.9 \mathrm{~Hz}$), 110.7 (bs).
$\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}=\mathrm{CBr}_{2}$ (5). A three-neck 2-L flask equipped with a Tefloncoated stir bar, solid addition tube, and a condenser (methanol/Neslab bath cooler) further attached to a N_{2} tee was charged with triphenylphosphine ($262.2 \mathrm{~g}, 1.00 \mathrm{~mol}$) and benzonitrile (1 L). The flask was cooled to $10^{\circ} \mathrm{C}$ with an ice water bath, and then $\mathrm{CBr}_{4}(165.8 \mathrm{~g}, 0.500$ mol) was added over a $10-\mathrm{min}$ period from the solid addition tube. After stirring for 1 h at $10^{\circ} \mathrm{C}$, the condenser was cooled to $-100^{\circ} \mathrm{C}$ and hexafluoroacetone ($91 \mathrm{~g}, 0.55 \mathrm{~mol}$) was condensed into the solution over a $45-\mathrm{min}$ period. The viscous mixture was stirred for 4 h at room temperature, and then the magnetic stir bar was removed and a mechanical stirrer was connected to the apparatus. The volatile materials were distilled from the flask at $85^{\circ} \mathrm{C} / 15 \mathrm{mmHg}$ and were collected in two $-196^{\circ} \mathrm{C}$ traps. The distillate was redistilled through a Bantam-ware (Kontes) apparatus equipped with a vacuum-jacketed 6 -in. Vigreux column, collecting 84.37 g (52% yield, 98.4% GLPC purity) of 5 : bp $56-61^{\circ} \mathrm{C} /$ $120-125 \mathrm{mmHg} ;$ GC-MS $324\left(\mathrm{M}^{++}, 34\right), 322\left(\mathrm{M}^{\bullet+}, 67\right), 320\left(\mathrm{M}^{\bullet+}, 35\right)$, 243 (44), 241 (42), 155 (32), 153 (32), 131 (22), 129 (23), 93 (36), 69 (100); FTIR 1622.1 (w), 1582.0 (m), 1296.7 (s), 1232.8 (s), 1175.8 (s), 783.2 (s); ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CN}\right) \delta-59.4$ (s) (lit. ${ }^{55}-57.5$); ${ }^{13} \mathrm{C}$ NMR (neat) $\delta 126.9(\mathrm{~m}), 120.3(\mathrm{q}, J=278 \mathrm{~Hz}$), 108.8 (bs).
$\mathrm{CF}_{2} \mathrm{Cl}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{CBr}_{2}$ (6). A procedure analogous to that for $\mathbf{1}$ was followed, employing triphenylphosphine $(107.5 \mathrm{~g}, 0.410 \mathrm{~mol}), \mathrm{CBr}_{4}(68.0$ $\mathrm{g}, 0.205 \mathrm{~mol}), \mathrm{CF}_{2} \mathrm{ClC}(\mathrm{Ph})=\mathrm{O}(35.4 \mathrm{~g}, 0.186 \mathrm{~mol})$, and 400 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Compound $6(45.6 \mathrm{~g}, 67 \%$ yield, 95.4% GLPC purity), bp $132-$ $134{ }^{\circ} \mathrm{C} / 4.0 \mathrm{mmHg}$, was isolated: GC-MS $350\left(\mathrm{M}^{\bullet+}, 2.9\right), 348\left(\mathrm{M}^{\bullet+}\right.$, 15), 346 ($\mathrm{M}^{\bullet+}, 22$), 344 ($\mathrm{M}^{\bullet+}, 9.7$), 313 (19), 311 (39), 309 (20), 269 (4.0), 267 (17), 265 (13), 151 (100), 75 (42); FTIR 3063.8 (vw), 1949.9 (vw), 1587.9 (s), 1493.5 (m), 1267.3 (vs), 1157.2 (vs), 1131.3 (vs); ${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}) $\delta 7.24-7.39(\mathrm{~m}) ;{ }^{19} \mathrm{~F}$ NMR (DMF) $\delta-43.9$ (s); ${ }^{13} \mathrm{C}$ NMR (acetone- d_{6}) $\delta 142.2(\mathrm{t}, J=28 \mathrm{~Hz}$), 141.9, 129.8, 129.1 (overlapping carbons), 124.5 (t, $J=293 \mathrm{~Hz}$), 101.0 (bs).
$\mathrm{CF}_{2} \mathrm{H}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{CBr}_{2}$ (7). Reaction of triphenylphosphine (16.53 g , $63.0 \mathrm{mmol}), \mathrm{CBr}_{4}(10.49 \mathrm{~g}, 31.6 \mathrm{mmol}$), and α, α-difluoroacetophenone ($3.85 \mathrm{~g}, 24.7 \mathrm{mmol}$) was carried out as described for 1 . The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer of the resulting heterogeneous reaction mixture was decanted, and the solids were washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed by rotary evaporation, and then the involatile residue was dry-loaded onto a silica gel (200 g) column and eluted with pentane, isolating 4.21 $\mathrm{g}\left(55 \%\right.$ yield) of $7,100 \%$ GLPC pure: GC-MS 314 (M++,54), $312\left(\mathrm{M}^{++}\right.$, 100), 310 ($\mathrm{M}^{\bullet+}, 48$), 233 (10), 231 (11), 213 (14), 211 (15), 182 (23), 180 (23), 152 (69), 151 (100), 101 (21), 51 (26); FTIR 3038.5 (vw), 1604.6 (w), 1444.7 (w), 1365.9 (m), 1123.5 (m), 1044.0 (s), 802.8 (vs),
(55) Tyuleneva, V. V.; Rozov, L. A.; Zeifman, Y. V.; Knunyants, I. L. Izv. Akad. Nauk SSSR, Ser. Khim. 1975, 1042-1045 (Engl. Trans1.).

740 (vs); ${ }^{1} \mathrm{H}$ NMR $\delta 7.6$ (m, 3 H), 7.2 (m, 2 H), 6.77 (t, $J=55 \mathrm{~Hz}, 1$ $\mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR $\delta-114.1(\mathrm{~d}, J=54 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 140.3(\mathrm{t}, J=25.6$ $\mathrm{Hz}), 133.9,129.1,129.0,128.5,113.2(\mathrm{t}, J=239 \mathrm{~Hz}), 100.0(\mathrm{t}, J=11$ Hz).
$\mathrm{CF}_{3} \mathrm{CH}=\mathrm{CBr}_{2}$ (8). A three-neck 2-L flask (flask 1) equipped with a Teflon-coated stir bar, two septa, and a dry ice/isopropyl alcohol condenser connected at the top to a N_{2} bubbler was charged with benzonitrile (600 mL) and triphenylphosphine ($79.1 \mathrm{~g}, 302 \mathrm{mmol}$) and cooled to $15^{\circ} \mathrm{C}$. Carbon tetrabromide ($49.9 \mathrm{~g}, 150 \mathrm{mmol}$) was added all at once, and the solution was stirred for 30 min . Another three-neck 2-L flask (flask 2) equipped with a Teflon-coated stir bar, two septa, and a 12 -in. uncooled condenser, was charged with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ (400 mL) and heated to $100-110^{\circ} \mathrm{C}$ with an oil bath. An outlet at the top of flask 2 's condenser was connected via Tygon tubing to an inlet at the bottom of the dry ice condenser of flask 1. The $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution was stirred vigorously, and then trifluoroacetaldehyde methyl hemiacetal, $\mathrm{CF}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{OCH}_{3}(50.2 \mathrm{~g}, 386 \mathrm{mmol})$, was added via syringe to flask 2 over a $30-\mathrm{min}$ period, with gaseous $\mathrm{CF}_{3} \mathrm{CH}=\mathrm{O}$ rapidly boiling into flask 1 under the reaction conditions. The contents of flask 1 were stirred at room temperature for another 4 h , and then the volatiles were removed at reduced pressure ($65^{\circ} \mathrm{C} / 0.8 \mathrm{mmHg}$). The distillate was redistilled, producing $9.73 \mathrm{~g}\left(26 \%\right.$ yield, 99% GLPC purity) of 8: bp $41-55^{\circ} \mathrm{C} /$ $95-100 \mathrm{mmHg}$; GC-MS $256\left(\mathrm{M}^{\bullet+}, 17\right), 254\left(\mathrm{M}^{\bullet+}, 33\right), 252\left(\mathrm{M}^{\bullet+}, 18\right)$, 175 (56), 173 (57), 75 (32), 69 (100); FTIR (3070.0 (vw), 1629.7 (m), 1605.0 (w), 1294.4 (vs), 1258.5 (s), 1149.6 (vs), 656.1 (s); ${ }^{1} \mathrm{H}$ NMR δ $6.84(\mathrm{q}, J=6.6 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\delta-61.1(\mathrm{~d}, J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR δ $127.4(\mathrm{q}, J=37 \mathrm{~Hz}), 121.6(\mathrm{q}, J=272 \mathrm{~Hz}), 102.7(\mathrm{q}, J=6.7 \mathrm{~Hz})$.
$\mathrm{EtO}_{2} \mathrm{CC}\left(\mathrm{CF}_{3}\right)=\mathrm{CBr}_{2}$ (9). A $50-\mathrm{mL}$ flask equipped with a Tefloncoated stir bar and a distillation apparatus was charged with 1 g of silica gel, 10 mL of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$, and $14.20 \mathrm{~g}(65.1 \mathrm{mmol})$ of $\mathrm{CF}_{3} \mathrm{CF}(\mathrm{OEt}) \mathrm{CO}_{2} \mathrm{Et}$. The solution was stirred and heated to $140^{\circ} \mathrm{C}$ with an oil bath. At this temperature $\mathrm{CF}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CO}_{2} \mathrm{Et}^{56}$ begins to distill. Three fractions were collected: bp $80-96^{\circ} \mathrm{C}(2.53 \mathrm{~g}, 91 \%$ GLPC pure $), 96-103$ ${ }^{\circ} \mathrm{C}(4.22 \mathrm{~g}, 95 \%$ GLPC pure $)$, and $103-105^{\circ} \mathrm{C}(3.05 \mathrm{~g}, 88 \%$ GLPC pure). The combined yield was 89%, with $88-95 \%$ GLPC purity: ${ }^{1} \mathrm{H}$ NMR $\delta 4.46(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR $\delta-76.1$ (s). It was critical in this procedure to promptly $(25 \rightarrow 140$ ${ }^{\circ} \mathrm{C} / 10 \mathrm{~min}$) heat the solution to $140^{\circ} \mathrm{C}$ and begin the distillation. It was apparent after several trials that purity and yield suffered when the mixture was gradually warmed to $140^{\circ} \mathrm{C}$ (the impurities have not been identified).

Reaction of triphenylphosphine ($33.35 \mathrm{~g}, 127 \mathrm{mmol}$), $\mathrm{CBr}_{4}(21.00 \mathrm{~g}$, 63.3 mmol), and $\mathrm{CF}_{3} \mathrm{COCO}_{2} \mathrm{Et}(10.8 \mathrm{~g}, 63.5 \mathrm{mmol})$ was carried out as described for 1. The following isolation was performed with rigorous exclusion of air and moisture from the hygroscopic 9 using inert a tmosphere Schlenk techniques. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed by low-pressure distillation. Anhydrous $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$ was added to the flask, and then the resulting slurry was stirred vigorously for 10 min . The slurry was filtered through a $200-\mathrm{mL}$ Schlenk funnel with a coarse frit. The solid was transferred back to the flask, and the extraction procedure was repeated three times. The $\mathrm{Et}_{2} \mathrm{O}$ was removed by low-pressure distillation ($25^{\circ} \mathrm{C} / 100 \mathrm{mmHg}$). Distillation of the residue afforded 5.43 g (26% yield, 99% GLPC pure) of 9: bp $116-119{ }^{\circ} \mathrm{C} / 70-75 \mathrm{mmHg}$; FTIR 1162.4 (vs), 1238.1 (vs), $1246.42(\mathrm{vs}), 1282.35(\mathrm{vs}), 1291.43(\mathrm{vs}), 1600.69(\mathrm{~m}), 1745.02(\mathrm{~s}), 1753.03$ (s), 2986.28 (w); GC-MS 328 (M*+, 1.1), 326 (M*, 2.1), 324 (M•+, 1.0), 300 (19), 298 (37), 296 (19), 283 (44), 281 (100), 279 (61), 259 (28), 257 (47), 255 (30), 93 (62), 69 (50), 45 (34); HRMS calc for $\mathrm{C}_{6} \mathrm{H}_{5}{ }^{81} \mathrm{Br}_{2} \mathrm{~F}_{3} \mathrm{O}_{2} 327.8568$, obs 327.8578 ; ${ }^{1} \mathrm{H}$ NMR $\delta 4.36(\mathrm{q}, ~ J=7 \mathrm{~Hz}$, 2 H), $1.36(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR $\delta-60.4$ (s); ${ }^{13} \mathrm{C}$ NMR (neat) $\delta 160.9$ (bs), $133.0(\mathrm{q}, J=35.2 \mathrm{~Hz}), 120.3(\mathrm{q}, J=275 \mathrm{~Hz}), 103.5(\mathrm{q}$, $J=4.5 \mathrm{~Hz}), 63.0,13.1$.
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}(\mathrm{OH}) \mathrm{CBr}_{3}(10) .{ }^{22}$ Tribromoacetic acid ($18.2 \mathrm{~g}, 61.3 \mathrm{mmol}$) was added over a $1-\mathrm{h}$ period to a solution of benzaldehyde ($4.26 \mathrm{~g}, 40.2$ mmol) and DMSO (50 mL), then the mixture was stirred overnight at room temperature. The reaction mixture was poured into 300 mL of ice water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4}, and filtered, and the solvent was removed by rotary evaporation to afford 15 g of crude product. The crude material was purified by silica gel (600 g) chromatography, with 1:1 pentane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ eluent. Fractions containing a mixture (5.67 g) of benzaldehyde and product were combined and recrystallized from pentane, and the crystals were evacuated at $75^{\circ} \mathrm{C} / 1.5 \mathrm{mmHg} / 2 \mathrm{~h}$ to remove residual benzaldehyde to afford 3.6 g of $\mathbf{1 0}$ (25% yield): $\boldsymbol{R}_{\boldsymbol{f}}$ (1:1 pentane:
(56) Knunyants, I. L.; Shokina, V. V.; Tyuleneva, V. V. Dokl, Akad. Nauk SSSR 1966, 169, 722. Tsao, H. W. Thesis, University of Iowa, 1974.
(57) Rozen, S.; Brand, M. J. Org. Chem. 1986, 5l, 222-225.
$\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.20 ; \operatorname{mp} 78^{\circ} \mathrm{C}$; DIP-MS $362\left(\mathrm{M}^{++}, 0.02\right), 360\left(\mathrm{M}^{\bullet+}, 0.11\right)$, $358\left(\mathrm{M}^{\bullet+}, 0.14\right), 356\left(\mathrm{M}^{\bullet+}, 0.02\right), 255(0.13), 253(0.41), 251(0.48)$, 249 (0.27), 107 (100), 79 (29), 77 (17); FTIR 3574.4 (br, w), 3037.7 (vw), 2337.5 (vw), 1454.6 (w), 1058.4 (m), 825.6 (s), 729.5 (vs); ${ }^{1} \mathrm{H}$ NMR (DMSO-d D $_{6}$) 7.7 (m, 2 H), 7.4 (m, 3 H), 7.2 (d, $J=5-6 \mathrm{~Hz}, 1$ $\mathrm{H}), 5.1(\mathrm{~d}, J=5-6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 135.2,129.6,129.4 .127 .6$, 85.8, 54.5.
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHFCBr}_{3}$ (11). (Diethylamido) sulfur trifluoride ($1.69 \mathrm{~g}, 10.5$ mmol) was added via syringe over a $10-\mathrm{min}$ period to a solution of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}(\mathrm{OH}) \mathrm{CBr}_{3}(2.86 \mathrm{~g}, 7.97 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$, and then the mixture was stirred for 1 h at room temperature. The reaction mixture was washed with ice water ($3 \times 20 \mathrm{~mL}$), dried over MgSO_{4}, and filtered, and the solvent was removed by rotary evaporation. The residue was purified by silica gel (150 g) chromatography with hexane eluent, isolating 2.43 g (85% yield) of solid product: $R_{f}=0.38 ; \mathrm{mp}=48-52^{\circ} \mathrm{C}$; GC-MS $358\left(\mathrm{M}^{\bullet+}, 0.13\right), 360\left(\mathrm{M}^{\bullet+}, 0.36\right), 362\left(\mathrm{M}^{\bullet+}, 0.31\right), 364\left(\mathrm{M}^{\bullet+}, 0.11\right), 202$ (4), 200 (4), 109 (100), 101 (12), 51 (11); FTIR 3038.5 (vw), 1455.2 (w), 1282.6 (w), 1045.4 (m), 794.1 (vs), 723.7 (vs); HRMS calc for $\mathrm{C}_{8} \mathrm{H}_{6}{ }^{79} \mathrm{Br}^{81} \mathrm{Br}_{2} \mathrm{~F} 361.7963$, obs $361.7965 ;{ }^{19} \mathrm{~F}$ NMR $\delta-155.3$ (d, $J=44$ $\mathrm{Hz})$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.7(\mathrm{~m}, 2 \mathrm{H}), 7.4(\mathrm{~m}, 3 \mathrm{H}), 5.78(\mathrm{~d}, J=43 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 132.6(\mathrm{~d}, J=21 \mathrm{~Hz}), 130.1,129.3(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 127.7$, 99.3 (d, $J=197 \mathrm{~Hz}$), 44.4 (d, $J=33.7 \mathrm{~Hz}$).
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CF}=\mathrm{CBr}_{2}(\mathbf{1 2}) . \mathrm{KO}^{\prime} \mathrm{Bu}(1.08 \mathrm{~g}, 9.62 \mathrm{mmol})$ was added over a $1-\mathrm{h}$ period to a $0^{\circ} \mathrm{C}$ solution of $11(1.96 \mathrm{~g}, 5.43 \mathrm{mmol})$ in hexane (30 mL), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, and methanol (5 mL), and then the mixture was stirred overnight at room temperature. The mixture was filtered, the filtrate was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$, dried over MgSO_{4}, and filtered, and the solvent was removed by rotary evaporation. The residue was dried over activated $4-\AA$ molecular sieves and then distilled to afford 0.46 g (30% yield) of 12 , bp $76-100^{\circ} \mathrm{C} / 0.5 \mathrm{mmHg}$ (unreacted 11 was also distilling at later stages; however, this compound solidified in the condenser and the liquid distillate was pure 12): GC-MS $282\left(\mathrm{M}^{\bullet+}, 18\right)$, $280\left(\mathrm{M}^{\bullet+}, 38\right), 278\left(\mathrm{M}^{\bullet+}, 19\right), 201(8), 199(8), 120(100), 100(12), 99$ (14), 74 (10); FTIR 3065.1 (vw), 2361.8 (vw), 1624.5 (w), 1267.1 (m), 1070.6 (s), 892.2 (vs); HRMS calc for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~F}^{79} \mathrm{Br}_{2} 277.8742$, obs 277.8745. The purity was determined to be $>98 \%$ by NMR analysis: ${ }^{19} \mathrm{~F}$ NMR $\delta-77.0$ (s) (lit. ${ }^{57}-77$ (s)); ${ }^{1} \mathrm{H}$ NMR $\delta 7.7$ (m, 2 H), 7.4 (m, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 156.3(\mathrm{~d}, J=257 \mathrm{~Hz}), 130.4,129.9(\mathrm{~d}, J=27 \mathrm{~Hz})$, 128.5 (d, $J=4 \mathrm{~Hz}$), 128.3, 76.4 (m, this C exhibits $\delta 77.1$ (d, $J=50$ Hz) in acetone- d_{6}).

Chlorotribromomethane. ${ }^{58}$ Sodium hypochlorite was prepared by the literature procedure ${ }^{59}$ in a 3 -L flask from $\mathrm{NaOH}(218 \mathrm{~g}, 5.5 \mathrm{~mol}), \mathrm{H}_{2} \mathrm{O}$ (300 mL), ice $\left(1.25 \mathrm{~kg}\right.$), and $\mathrm{Cl}_{2}(161 \mathrm{~g}, 2.3 \mathrm{~mol})$. The reaction flask was equipped with a mechanical stirrer and septa, then $\mathrm{CHBr}_{3}(255 \mathrm{~g}$, 1.01 mol) was added, and the mixture was stirred vigorously for 3 days at room temperature. The solids were washed with water in a Buchner funnel to afford 281 g (97%) of crude product. GC-MS of the solid material revealed $82 \% \mathrm{CClBr}_{3}$, with a $96: 4$ ratio of CClBr_{3} to CBr_{4}. Small amounts of CHBr_{3} and $\mathrm{CHBr}_{2} \mathrm{Cl}$ were also present. Spinning band distillation gave $172 \mathrm{~g}(59 \%)$ of CClBr_{3}, bp $160-161^{\circ} \mathrm{C}$. Recrystallization of the light orange solid from pentane gave $31.1 \mathrm{~g}(11 \%)$ of solid white $\mathrm{CClBr}_{3}, \mathrm{mp} 55-56{ }^{\circ} \mathrm{C}\left(\right.$ lit..$^{58} \mathrm{mp} 53^{\circ} \mathrm{C}$), which was contaminated by traces of CBr_{4} as determined by ${ }^{13} \mathrm{C}$ NMR and GC-MS techniques: ${ }^{13} \mathrm{CNMR} \mathrm{CClBr}_{3} \delta+4.6$ (lit. ${ }^{60}+3.9$); $\mathrm{CBr}_{4} \delta-29.8 ; \mathrm{CHBr}_{3}$ $\delta+9.6 ; \mathrm{GC}-\mathrm{MS} \mathrm{CClBr}_{3} 288\left(\mathrm{M}^{\bullet+}, 0.07\right), 286\left(\mathrm{M}^{\bullet+}, 0.06\right), 211(16), 209$ (72), 207 (100), 205 (47), 81 (18), 79 (18).
$\mathrm{CF}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{CBrCl}$ (13). A procedure analogous to that for 1 was followed, employing 17.30 g (65.6 mmol) of triphenylphosphine, CClBr_{3} ($9.30 \mathrm{~g}, 32.4 \mathrm{mmol}, 1-5 \% \mathrm{CBr}_{4}$), and trifluoroacetophenone ($5.25 \mathrm{~g}, 30.2$ $\mathrm{mmol})$. Usual workup and distillation gave 5.10 g of material, bp 99$110^{\circ} \mathrm{C} / 12 \mathrm{mmHg} .{ }^{19} \mathrm{~F}$ NMR and GC-MS analysis of the distillate indicated that $50 \% 1,28 \% E-13$, and $22 \% Z-13$ had formed. The E and Z isomers of 13 were separated from 1 by preparative scale GC to afford a 99% GLPC pure sample of (E) - and $(Z)-13$. A typical GC-MS for (E)- or $(Z)-\mathrm{CF}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{CBrCl}$ follows: $288\left(\mathrm{M}^{\bullet+}, 22\right), 286\left(\mathrm{M}^{\bullet+}\right.$, 90), $284\left(\mathrm{M}^{\bullet+}, 81\right), 207$ (27), 205 (86), 187 (34), 185 (100), 169 (62), 136 (100), 101 (66), 69 (30); HRMS calc for $\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~F}_{3}{ }^{79} \mathrm{Br}^{35} \mathrm{Cl} 283.9215$, obs 283.9215 ; ${ }^{1} \mathrm{H}$ NMR $\delta 7.4(\mathrm{~m}, 3 \mathrm{H}), 7.2(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR $\delta-59.2$ (s) for $(Z)-13,-59.1(\mathrm{~s})$ for $(E)-13$.

General Procedure for the Preparation of α-Halovinyl Zinc Reagents. A two-neck $50-\mathrm{mL}$ flask equipped with a Teflon-coated stir bar, N_{2} tee,
(58) Dehn, W. M. J. Am. Chem. Soc. 1909, 3l, 1220-1233.
(59) Newman, M. S.; Holmes, H. L. In Organic Syntheses; Blatt, A. H., Ed.; Wiley: New York, 1943; Collect. Vol. II, pp 428-430.
(60) Litchman, W. M.; Grant, D. M. J. Am. Chem. Soc. 1968, 90, 14001407.
and septa was charged with zinc, a catalytic amount ($1-5 \mathrm{mg}$) of HgCl_{2}, and DMF. For volatile dibromoalkenes 5 and 8 , a tap water condenser was also employed. The dibromoalkene was then added via syringe: all at once for $<10 \mathrm{mmol}$ scale reactions or slowly for $>10 \mathrm{mmol}$ scale reactions, in order to moderate the exothermic reaction. Initiation times varied with dibromoalkene substrates and were realized when the mixture turned light green and then black in color and an exothermic reaction occurred. The zinc reagents were hydrolyzed with $10-50 \% \mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}$, and the products were analyzed by NMR techniques and GC-MS in some instances. See Table II for ratios of zinc reagent isomers.
(E) - and (Z) $\mathrm{CF}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{CBrZnX}(\mathbf{3 7}, 38) .{ }^{16} \mathrm{Zn}(3.72 \mathrm{~g}, 56.9$ mmol) and $1(10.43 \mathrm{~g}, 31.6 \mathrm{mmol})$ in 25 mL of DMF were stirred overnight at room temperature: ${ }^{19}$ F NMR (DMF) $\delta-55.9$ (s, bis 38), -56.4 (s, mono 38), -60.2 (s, bis 37), -60.4 (mono 37). Data for $(E)-\mathrm{CF}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{CHBr}:{ }^{1} \mathrm{H}$ NMR (acetone- d_{6}) $\delta 7.74\left(\mathrm{q},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{F}}=1.8\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 7.3-7.5(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (acetone- d_{6}) $\delta-64.6\left(\mathrm{~d},{ }^{4}{ }^{4} \mathrm{H} \cdot \mathrm{F}=\right.$ 1.7 Hz). Data for $(Z)-\mathrm{CF}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{CHBr}:{ }^{1} \mathrm{H}$ NMR (acetone- $\left.d_{6}\right) \delta$ 7.3-7.5 (m); ${ }^{19} \mathrm{~F}$ NMR (acetone- d_{6}) $\delta-59.0(\mathrm{~s})$.
(E)- and (Z) $-\mathrm{CF}_{3} \mathrm{CF}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{CBrZnX} . \mathrm{Zn}(3.2 \mathrm{~g}, 49 \mathrm{mmol})$ and $2(12.8 \mathrm{~g}, 33.7 \mathrm{mmol})$ in 30 mL of DMF were stirred overnight at room temperature: ${ }^{19} \mathrm{~F}$ NMR (DMF) $\delta-80.6$ (s, $3 \mathrm{~F}, 19 \%$), -80.8 (s, 3 F , 64%), -81.1 (s, 3 F, 13%), -81.9 (s, 3 F , 4\%), -104.5 (s, $2 \mathrm{~F}, 4 \%$), -105.1 (s, $2 \mathrm{~F}, 13 \%$), -107.5 (s, $2 \mathrm{~F}, 64 \%$), -107.8 (s, $2 \mathrm{~F}, 19 \%$).
(E) - and $(\boldsymbol{Z})-\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{CBrZnX} . \mathrm{Zn}(0.96 \mathrm{~g}, 14.7 \mathrm{mmol})$ and $3(4.06 \mathrm{~g}, 9.45 \mathrm{mmol})$ in 10 mL of DMF were stirred for 4 h at room temperature: ${ }^{19}$ F NMR (DMF) $\delta-80.0$ (m, 3 F), -101.8 (m, $2 \mathrm{~F}, 25 \%$), -104.3 (m, 2 F, 75\%), -122.1 (m, 2 F).
(E)- and (Z) $-\mathrm{CF}_{3}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{C}=\mathrm{CBrZnX} . \mathrm{Zn}(1.40 \mathrm{~g}, 21.4 \mathrm{mmol})$ and 4 ($6.25 \mathrm{~g}, 14.9 \mathrm{mmol}$) in 30 mL of DMF were stirred for 2 h at room temperature: ${ }^{19}$ F NMR (DMF) $\delta-58.2$ to -61.5 (m, 3 F, 100\%), -140.0 (m, 2 F), -154.1 (m, 1 F), 162.8 (m, 2 F, 100\%).
$\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}=\mathrm{CBrZnX} . \mathrm{Zn}(0.14 \mathrm{~g}, 2.1 \mathrm{mmol})$ and $5(0.62 \mathrm{~g}, 1.9 \mathrm{mmol})$ in 2 mL of DMF were stirred for 1 h at room temperature: ${ }^{19} \mathrm{~F}$ NMR (DMF) $\delta-59.6(\mathrm{q}, J=7 \mathrm{~Hz}, 1 \mathrm{~F}),-58.0(\mathrm{q}, J=7 \mathrm{~Hz}, 1 \mathrm{~F})$.
$\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}=\mathbf{C}(\mathbf{Z n X})_{\mathbf{2}}(14) . \mathrm{Zn}(0.52 \mathrm{~g}, 8.0 \mathrm{mmol})$ and $5(0.65 \mathrm{~g}, 2.0$ mmol) in 4 mL of DMF were stirred for 1 h at room temperature and then for $20 \mathrm{~h} / 75^{\circ} \mathrm{C}$: ${ }^{19} \mathrm{~F}$ NMR (DMF) $\delta-61.0$ (s), $61 \%{ }^{19} \mathrm{~F}$ NMR yield vs PhCF_{3} internal standard.
(E) $-\mathrm{CF}_{2} \mathrm{Cl}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{CBrZnX} \cdot T M E D A(16) . \mathrm{Zn}(0.53 \mathrm{~g}, 8.1 \mathrm{mmol})$, TMEDA ($1.06 \mathrm{~g}, 9.12 \mathrm{mmol}$), and $6(1.62 \mathrm{~g}, 4.85 \mathrm{mmol})$ in 5 mL of DMF were stirred for 1 h at room temperature: ${ }^{19} \mathrm{~F}$ NMR (DMF) $\delta-45.9$ (s, bis 16), -47.1 (s , mono 16).
(Z) $-\mathrm{CF}_{2} \mathrm{Cl}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{CBrI}$ (23). Zinc reagent 16 (24 mmol) was filtered through a medium frit Schlenk funnel under positive Ar pressure, cooled to $0^{\circ} \mathrm{C}$, and then quenched with $7.0 \mathrm{~g}(28 \mathrm{mmol})$ of I_{2}. The reaction mixture was poured into 75 mL of $10 \% \mathrm{HCl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 50 \mathrm{~mL})$. The organic extracts were combined and washed with $10 \% \mathrm{HCl}(2 \times 50 \mathrm{~mL}), 5 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \times 50 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(1 \times$ 50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered, and the solvent was removed by rotary evaporation. The residue was distilled to give 4.36 g (46% yield) of $23, \mathrm{bp} 117-119^{\circ} \mathrm{C} / 1.7 \mathrm{mmHg}, 100 \%$ GLPC purity: GC-MS $396\left(\mathrm{M}^{++}, 8\right), 394\left(\mathrm{M}^{++}, 30\right), 392\left(\mathrm{M}^{++}, 23\right), 359$ (18), 357 (17), 267 (9), 265 (7), 186 (22), 151 (100), 127 (31), 101 (32), 75 (52), 74 (30), 51 (33), 50 (21); FTIR 3063.4 (w), 1949.2 (vw), 1686.9 (w), 1577.3 (w), 1261.3 (m), 1141.8 (vs), 1002.9 (m); HRMS calc for $\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~F}_{2}{ }^{35} \mathrm{Cl}^{79} \mathrm{BrI}$ 391.8276, obs 391.8272; calc for $\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~F}_{2}{ }^{37} \mathrm{Cl}^{79}$ BrI 393.8247, obs 393.8252; calc for $\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~F}_{2}{ }^{37} \mathrm{Cl}^{81}$ BrI 395.8226 , obs $395.8225 ;{ }^{19} \mathrm{~F}$ NMR $\delta-45.3$ (s); ${ }^{1} \mathrm{H}$ NMR $\delta 7.38(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 147.0(\mathrm{t}, J=27$ $\mathrm{Hz}), 136.1,129.1,128.63,128.59,124.4(\mathrm{t}, J=294 \mathrm{~Hz}), 60.5(\mathrm{bs})$.
$E-\mathrm{CF}_{2} \mathrm{Cl}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{CHBr}$ (24). Zinc reagent $16(4.85 \mathrm{mmol})$ was poured into 20 mL of $10 \% \mathrm{HCl}$, and then extracted with hexane ($3 \times$ $20 \mathrm{~mL})$. The organic extracts were washed with $10 \% \mathrm{HCl}(2 \times 20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1 \times 20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered, and the solvent was removed by rotary evaporation. The residue was distilled to give $0.41 \mathrm{~g}\left(31 \%\right.$ yield) of $24, \mathrm{bp} 88-89^{\circ} \mathrm{C} / 5.0 \mathrm{mmHg}, 98 \%$ GLPC pure: FTIR 3092.2 (w), 3062.6 (w), 1950.2 (vw), 1626.0 (m), 1494.3 (m), $1323.4(\mathrm{~m}), 1213.6(\mathrm{~m}), 1156.3$ (s), $1121.4(\mathrm{~s}) ;$ GC-MS $270\left(\mathrm{M}^{+}, 20\right)$, 268 ($\mathrm{M}^{++}, 78$), 266 ($\mathrm{M}^{++}, 60$), 233 (91), 231 (92), 189 (25), 187 (76), 152 (77), 151 (84), 102 (100); HRMS calc for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~F}_{2}{ }^{35} \mathrm{Cl}^{7}{ }^{9} \mathrm{Br} 265.9310$, obs 265.9301 ; calc for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~F}_{2}{ }^{37} \mathrm{Cl}^{79} \mathrm{Br} 267.9280$, obs 267.9286 ; calc for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~F}_{2}{ }^{37} \mathrm{Cl}^{181} \mathrm{Br} 269.9259$, obs $269.9260 ;{ }^{19} \mathrm{~F}$ NMR (acetone- d_{6}) $\delta-51.0$ (m): ${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}) $\delta 7.60\left(\mathrm{t},{ }^{4} \mathrm{~J}_{\mathrm{H} \cdot \mathrm{F}}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$), $7.46(\mathrm{~m}$, $3 \mathrm{H}) ; 7.34(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{33} \mathrm{C}$ NMR (acetone- d_{6}) $\delta 141.7(\mathrm{t}, J=24 \mathrm{~Hz}), 132.8$, 130.3, 130.1, 129.3, 125.9 (t, $J=291 \mathrm{~Hz}$), 117.2 (bs).
$\mathrm{CF}_{2} \mathrm{H}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{CBrZnX}(17) . \mathrm{Zn}(0.09 \mathrm{~g}, 1 \mathrm{mmol})$ and $7(0.30 \mathrm{~g}$, 0.96 mmol) in 1 mL of DMF were stirred for 1 h at room temperature.

See Scheme I for ${ }^{19} \mathrm{~F}$ NMR data of 17, 20, and 21. ${ }^{1} \mathrm{H}$ NMR for 20: $7.47-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.01\left(\mathrm{t},{ }^{4} J_{\mathrm{H}-\mathrm{F}}=2.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.22\left(\mathrm{t},{ }^{2} J_{\mathrm{H} \cdot \mathrm{F}}=55.3\right.$ $\mathrm{Hz}, 1 \mathrm{H}$). ${ }^{1} \mathrm{H}$ NMR for 21: $7.47-7.31(\mathrm{~m}, 5 \mathrm{H}), 6.91(\mathrm{t}, J=54.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.73$ (s, 1 H).
$\mathrm{CF}_{3} \mathrm{CH}=\mathrm{CBrZnX}(18) . \mathrm{Zn}(0.36 \mathrm{~g}, 5.5 \mathrm{mmol})$ and $8(0.74 \mathrm{~g}, 2.9$ mmol) in 4 mL of DMF were stirred for 3 h at room temperature: ${ }^{19} \mathrm{~F}$ NMR (DMF) $\delta-57.6(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, bis (Z)-18), $-57.9(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, mono (Z)-18), $-59.8(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, bis $(E)-18),-60.0(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, mono (E)-18). Data for (E) $-\mathrm{CF}_{3} \mathrm{CH}=\mathrm{CHBr}:{ }^{19} \mathrm{~F}$ NMR (DMF) $\delta-64.6$ (dd, $J=7.3,2.1 \mathrm{~Hz}$); ${ }^{1} \mathrm{H}$ NMR $\delta 7.14(\mathrm{dq}, J=14,7 \mathrm{~Hz}, 1 \mathrm{H}), 6.30$ ($\mathrm{m}, 1 \mathrm{H}$). Data for $(Z)-\mathrm{CF}_{3} \mathrm{CH}=\mathrm{CHBr}$: ${ }^{19} \mathrm{~F}$ NMR $\delta-60.9(\mathrm{~d}, J=7.3$ $\mathrm{Hz}) ;{ }^{1} \mathrm{H}$ NMR $\delta 6.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{dq}, J=8.6,7 \mathrm{~Hz}, 1$ H).
$(Z)-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CF}=\mathrm{CBrZnX}(19) . \mathrm{Zn}(0.05 \mathrm{~g}, 0.8 \mathrm{mmol})$ and $12(0.14 \mathrm{~g}$, 0.5 mmol) in 1 mL of DMF were stirred for 2 h at room temperature. ${ }^{19} \mathrm{~F}$ NMR analysis indicated the formation of $(Z)-19$ and (Z) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CF}=\mathrm{CHBr}$ in an 80:20 ratio. ${ }^{19} \mathrm{~F}$ NMR (DMF) for (Z)-19: δ -72.0 (bs). ${ }^{19}$ F NMR (DMF) for (Z) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CF}=\mathrm{CHBr}$: $\delta-105.8$ (d, $J=29 \mathrm{~Hz}$).
$\mathrm{CF}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CF}_{3}(\mathbf{2 5}, 26)$. A solution of 37 and 38 (31.6 mmol) in DMF was cooled with a $-40^{\circ} \mathrm{C}$ dry ice/isopropyl alcohol bath, then $\mathrm{CuBr}(0.36 \mathrm{~g}, 2.5 \mathrm{mmol})$ was added to the mixture, and the solution was warmed to room temperature over a $4-\mathrm{h}$ period. The DMF was removed by distillation at low pressure $\left(0.5 \mathrm{mmHg} / 50^{\circ} \mathrm{C}\right.$), the residue and 3 g of silica gel were dissolved in hexane, and the hexane was removed by rotary evaporation. The remaining solid was sprinkled onto a silica gel (700 g) column and eluted with hexane. Two broad yellow bands were collected, and the solvent was removed by rotary evaporation to afford 0.83 g of $26\left(100 \%\right.$ isomeric ${ }^{19} \mathrm{~F}$ NMR purity, $\left.R_{f}=0.64\right)$ and 3.06 g of 25 (93% isomeric ${ }^{19} \mathrm{~F}$ NMR purity, $R_{f}=0.52$), combined yield $=72 \%$. The Z isomer could be obtained isomerically pure by recrystallization from hexane or by collecting a later fraction from the second yellow band during the silica gel column isolation. Injection of pure (E)or $(Z)-\mathrm{CF}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CF}_{3}$ of a mixture of isomers always resulted in one peak in the GC-MS spectrum: GC-MS 340 (M^{++}, 100), 321 (9.7), 251 (54), 202 (90), 69 (7.3); HRMS cale for $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~F}_{6}$ 340.0687, obs 340.0677. Data for 26: mp 140-141 ${ }^{\circ} \mathrm{C}$; FTIR 3063.9 (vw), 2363.4 (vw), 2360.2 (vw), 1447.2 (w), 1187.3 (s), 1175.2 (s), 1139.4 (s); ${ }^{19}$ F NMR (hexane) $\delta-59.9$ (s); ${ }^{1} \mathrm{H}$ NMR $\delta 7.70$ (m, 2 H), 7.44 (m, $3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR δ 156.9, 131.1, 130.4, 129.1, 127.9, 121.9 ($\mathrm{q}, J=275$ $\mathrm{Hz}), 115.7(\mathrm{q}, J=34.9 \mathrm{~Hz})$. Data for $25:{ }^{19} \mathrm{mp}$ 104-107 ${ }^{\circ} \mathrm{C}$; FTIR 3057.4 (vw), 2358.7 (vw), 2349.6 (w), 1564.0 (vw), 1175.9 (s), 1133.6 (s); ${ }^{1} \mathrm{H}$ NMR $\delta 7.45(\mathrm{~m}, 3 \mathrm{H}), 7.67(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (hexane) $\delta-60.4$ (s); ${ }^{13} \mathrm{C}$ NMR $\delta 157.7,131.5,130.3,129.2,128.2,121.7(\mathrm{q}, J=275 \mathrm{~Hz}$), $116.0(\mathrm{q}, J=35.3 \mathrm{~Hz}$). UV data are presented in Table III.
$\mathrm{CF}_{3} \mathrm{CF}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CF}_{2} \mathrm{CF}_{3}(\mathbf{2 7}, 28)$. A solution of $\mathrm{CF}_{3} \mathrm{CF}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{CBrZnX}(33.7 \mathrm{mmol})$ in DMF was filtered under positive N_{2} pressure through a medium frit Schlenk funnel and cooled in an ice water bath, and then a catalytic amount of $\mathrm{CuBr}(20-30 \mathrm{mg})$ was added to the stirring mixture, and the solution was warmed to room temperature over a $4-\mathrm{h}$ period. The DMF was removed by distillation at low pressure $\left(0.5 \mathrm{mmHg} / 50^{\circ} \mathrm{C}\right)$, then the residue was dissolved in hexane, and the solvent was removed by rotary evaporation with 3 g of silica gel. The remaining solid was sprinkled onto a silica gel (700 g) column and eluted with hexane. As the solvent eluted, two broad yellow bands with a light yellow region between them were observed. These three fractions were collected, and the solvent was removed by rotary evaporation to afford 2.14 g of $\mathbf{2 8}$ (first band, 100% isomeric ${ }^{19} \mathrm{~F}$ NMR purity, $R_{f}=0.53$), 0.38 g of the tailing portion of the first yellow band and the beginning of the second yellow band ($55: 45$ 28:27), and 2.32 g of 27 (second band, 99% isomeric ${ }^{19} \mathrm{~F}$ NMR purity, $R_{f}=0.38$), combined yield $=65 \%$. Injection of pure 27 or 28 or a mixture of isomers always resulted in one peak in the GC-MS spectrum. GC-MS of the mixture, 1 peak observed: $440\left(\mathrm{M}^{++}, 100\right), 371(75.9), 251$ (60.7), $202(88.4), 151$ (13.6), 101 (17.9); HRMS calc for $\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{~F}_{10} 440.0623$, obs 440.0603 . Data for 28: mp 92-93 ${ }^{\circ} \mathrm{C}$; FTIR 1148.6 (s), 1164.1 (vs), 1254.4 (vs), 1324.4 (vs), 1445.8 (w), 1902.7 (vw), 3064.2 (vw); ${ }^{1}$ H NMR $\delta 7.58$ (m, 2 H), 7.33 (m, 3 H); ${ }^{19} \mathrm{~F}$ NMR $\delta-83.0(\mathrm{~s}, 3 \mathrm{~F}),-107.6$ ($\mathrm{s}, 2 \mathrm{~F}$); ${ }^{13} \mathrm{C}$ NMR $\delta 160.9(\mathrm{t}, J=6.6 \mathrm{~Hz}), 132.8,130.6,129.3,129.2,119.4(\mathrm{qt}, J=287$, $37.6 \mathrm{~Hz}), 116.0(\mathrm{t}, J=27 \mathrm{~Hz}), 112.8(\mathrm{tq}, J=257,38.9 \mathrm{~Hz})$. Data for 27: mp 74-76 ${ }^{\circ}$ C; FTIR 1153.5 (vs), 1209.6 (vs), 1253.8 (s), 1325.6 (s), 1445.3 (w), 1952.1 (vw), 3063.7 (vw); ${ }^{1} \mathrm{H}$ NMR $\delta 7.58$ (m, 2 H), 7.33 (m, 3 H); ${ }^{19} \mathrm{~F}$ NMR $\delta-82.6$ (s, 3 F), -107.2 (s, 2 F); ${ }^{13} \mathrm{C}$ NMR $\delta 160.1$ (t, $J=6.8 \mathrm{~Hz}$), 132.2, 130.5, 129.1, 128.8, 119.2 (qt, $J=287,37.7 \mathrm{~Hz}$), $115.7(\mathrm{t}, J=25.0 \mathrm{~Hz}), 112.7(\mathrm{tq}, J=257,38.6 \mathrm{~Hz})$. UV data are presented in Table III.
$\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{3}(29,30)$. A solution of $n-\mathrm{C}_{3} \mathrm{~F}_{7}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{CBr} \mathrm{ZnX}(9.45 \mathrm{mmol})$ in DMF was filtered under positive \mathbf{N}_{2} pressure through a medium frit Schlenk funnel and cooled in an ice water bath, then a catalytic amount of $\mathrm{CuBr}(20-30 \mathrm{mg})$ was added to the stirred mixture, and the solution was warmed to room temperature over a 1-h period. The DMF was removed by distillation at low pressure $\left(0.5 \mathrm{mmHg} / 50^{\circ} \mathrm{C}\right)$, then the residue was dissolved in hexane, and the solvent was removed by rotary evaporation with 3 g of silica gel. The remaining solid was sprinkled onto a silica gel (700 g) column and eluted with hexane. Two bright yellow bands with an intermediate faint yellow band were observed to elute. These three bands were collected, and the solvent was removed by rotary evaporation to afford 1.0 g of 30 (first bright band, 99% isomeric ${ }^{19} \mathrm{~F}$ NMR purity, R_{f} $=0.64$) and 0.8 g of 29 (intermediate faint band, 92% isomeric ${ }^{19} \mathrm{~F}$ NMR purity, $R_{f}=0.44$), combined yield $=70 \%$. Isomer 29 could be further purified by recrystallization from hexane. GC-MS of the mixture, 1 signal observed: $540\left(\mathrm{M}^{\bullet+}, 42\right), 521$ (2), 421 (100), 302 (64), 251 (82), 202 (66), 151 (33), 101 (24), 77 (15), 69 (13). Data for 30: mp 95-96 ${ }^{\circ} \mathrm{C}$; FTIR 3064.2 (vw), 1494.5 (vw), 1445.4 (w), 1341.4 (m), 1231.6 (vs), 1212.8 (vs), 1186.8 (s), 1117.0 (s); ${ }^{1} \mathrm{H}$ NMR $\delta 7.6$ (m, 2 H), 7.4 (m, 3 H); ${ }^{19} \mathrm{~F}$ NMR $\delta-80.2(\mathrm{t}, J=9.8 \mathrm{~Hz}, 3 \mathrm{~F}$), $-104.2(\mathrm{q}, J=9.8 \mathrm{hz}$, $2 \mathrm{~F}),-124.7(\mathrm{~s}, 2 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR $\delta 160.6(\mathrm{t}, J=7.5 \mathrm{~Hz}), 132.3,130.5$, 129.1, 128.1, 118.1 (qt, $J=288,34 \mathrm{~Hz}), 116.2(\mathrm{t}, J=27 \mathrm{~Hz}), 114.4$ ($\mathrm{tt}, J=258,32 \mathrm{~Hz}$), 109.4 (t of sextets, $J=267,38 \mathrm{~Hz}$). Data for 29: mp 66-73 ${ }^{\circ} \mathrm{C}$; FTIR 3064.0 (vw), 1493.7 (w), 1445.1 (w), 1345.1 (m), 1231.2 (vs), 1212.1 (vs), 1186.3 (s), 1117.3 (s); ${ }^{1} \mathrm{H}$ NMR $\delta 7.7$ (m, 2 H), $7.4(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR $\delta-80.7(\mathrm{t}, J=9.8 \mathrm{~Hz}, 3 \mathrm{~F}),-104.4(\mathrm{q}, J=9.8$ $\mathrm{Hz}, 2 \mathrm{~F}),-125.1$ (s, 2 F); ${ }^{13} \mathrm{C}$ NMR $\delta 161.6(\mathrm{t}, J=7.1 \mathrm{~Hz}), 132.8,130.5$, 129.2 (overlapping carbons), 118.5 (qt, $J=288,34 \mathrm{~Hz}$), 116.5 ($\mathrm{t}, J=$ 25 Hz), 114.3 ($\mathrm{tt}, J=258,32 \mathrm{~Hz}$), 109.5 (t of sextets, $J=267,38 \mathrm{~Hz}$). HRMS: calc for $\mathrm{C}_{22} \mathrm{H}_{10} \mathrm{~F}_{14} 540.0556$. obs 540.0570 . UV data are presented in Table III.
$\mathrm{CF}_{3}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{CF}_{3}(31,32)$. A solution of $\mathrm{CF}_{3}\left(\mathrm{C}_{6}-\right.$ $\left.\mathrm{F}_{5}\right) \mathrm{C}=\mathrm{CBrZnX}(14.9 \mathrm{mmol})$ in DMF was allowed to settle, and then the supernatant was removed from the excess Zn by syringe and added to a $100-\mathrm{mL}$ flask equipped with a Teflon-coated stir bar and N_{2} tee. A catalytic amount of CuBr was added, and a mild exotherm was immediately observed. After stirring at room temperature for 2 h , the DMF was removed by distillation at $60^{\circ} \mathrm{C} / 2 \mathrm{mmHg}$. The residue was extracted with hexane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then dry-loaded onto a silica gel column. Elution with pentane afforded 2.63 g (68% yield) of a mixture of $\sim 1: 131: 32\left(R_{f}=0.46\right)$. The isomers also sublimed ($0.5 \mathrm{mmHg}, 80$ ${ }^{\circ} \mathrm{C}$) simultaneously. The isomers could be separated by fractional recrystallization from hexane, and a single recrystallization of a 50:50 mixture of isomers gave crystals that had a $97: 3 \mathbf{3 2}: 31$ composition. A second recrystallization gave 32 in $100 \%{ }^{19}$ F NMR purity. Five successive recrystallizations of the mother liquors gave crystals and mother liquor that were 89% and 86% 31, respectively. Further recrystallizations did not increase the ratio of 31 in either the mother liquor or the crystals, so 89% was the isomeric purity limit for 31 by recrystallization from hexane. Attempted recrystallization from commercial grade or freshly distilled diethyl ether resulted in decomposition, as evidenced by the appearance of several new peaks in the ${ }^{19} \mathrm{~F}$ NMR spectrum. Compounds 31 and 32 both isomerized during GC-MS analysis. Injection ($250^{\circ} \mathrm{C}$ GC injector) of $100 \% 32$ or $89 \% 31$ afforded two peaks in the chromatogram at 6.09 and $6.14 \mathrm{~min}(\sim 40: 60$ for each trial), both with identical mass chromatograms: GC-MS $520\left(\mathrm{M}^{\bullet+}, 42\right), 501(10), 451$ (63), 382 (100), 313 (21), 69 (40); HRMS calc for $\mathrm{C}_{18} \mathrm{~F}_{16} 519.9745$, obs 519.9763. Data for 32: FTIR 1649.9 (m), 1521.9 (vs), 1501.0 (vs), 1457.4 (w), 1426.9 (s), 1257.9 (vs), 1166.6 (vs), 1141.6 (vs); $m p 105^{\circ} \mathrm{C}$; ${ }^{19}$ F NMR $\delta-62.9(\mathrm{t}, J=9.8 \mathrm{~Hz}, 3 \mathrm{~F}),-137.3$ (m, 2 F), -148.7 (tt, J $=21,4 \mathrm{~Hz}, 1 \mathrm{~F}),-160.2(\mathrm{~m}, 2 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR $\delta 167.9$ (bs), $145.3(\mathrm{dm}$, $J=255 \mathrm{~Hz}), 143.3(\mathrm{dtt}, J=260,13.3,4.6 \mathrm{~Hz}), 138.3(\mathrm{dm}, J=255 \mathrm{~Hz})$, $120.0(\mathrm{q}, J=276 \mathrm{~Hz}), 107.1(\mathrm{q}, J=41.3 \mathrm{~Hz}), 106.0(\mathrm{~m}, J=17.0 \mathrm{~Hz})$. Data for 31: FTIR 1650.5 (m), 1522.3 (vs), 1501.9 (vs), 1428.7 (m), 1291.2 (s), 1257.5 (s), 1165.6 (vs), 1147.4 (vs), 1086.3 (s); $\mathrm{mp} 45-51^{\circ} \mathrm{C}$; ${ }^{19} \mathrm{~F}$ NMR $\delta-62.2(\mathrm{t}, J=9.8 \mathrm{~Hz}, 3 \mathrm{~F}),-137.3(\mathrm{~m}, 2 \mathrm{~F}),-148.5(\mathrm{tt}, J$ $=21,4 \mathrm{~Hz}, 1 \mathrm{~F}),-160.2(\mathrm{~m}, 2 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR $\delta 167.4$ (bs), $145.2(\mathrm{dm}$, $J=256 \mathrm{~Hz}), 143.3(\mathrm{dtt}, J=261,13.3,4.7 \mathrm{~Hz}), 138.3(\mathrm{dm}, J=252 \mathrm{~Hz})$, $120.0(\mathrm{q}, J=276 \mathrm{~Hz}), 107.2(\mathrm{q}, J=42 \mathrm{~Hz}), 106.2(\mathrm{tm}, J=17 \mathrm{~Hz})$. UV data are presented in Table III.
$\mathrm{CF}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{CClZnX}(35,36) . \mathrm{Zn}(0.09 \mathrm{~g}, 1 \mathrm{mmol})$ and $13(0.15$ $\mathrm{g}, 0.53 \mathrm{mmol}$) in 2 mL of DMF were stirred 2 h at room temperature. See eq 4 for ${ }^{19} \mathrm{~F}$ NMR data of 35 and 36. Data for $(Z)-\mathrm{CF}_{3}$ $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{CHCl} ;{ }^{19} \mathrm{~F}$ NMR (DMF) $\delta-58.4$ (s). Data for $(E)-\mathrm{CF}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{CHCl}:{ }^{19} \mathrm{~F}$ NMR (DMF) $\delta-63.9(\mathrm{~s})$.
$\mathrm{CF}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{CFZnX}(33,34) .{ }^{18} \mathrm{Zn}(2.07 \mathrm{~g}, 31.7 \mathrm{mmol})$ and $\mathrm{CF}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{CFBr}(5.58 \mathrm{~g}, 20.8 \mathrm{mmol})$ in 20 mL of DMF were stirred for 18 h at room temperature. ${ }^{19} \mathrm{~F}$ NMR (DMF) for 33: $\delta-55.5$ (d, J $=22 \mathrm{~Hz}, 3 \mathrm{~F}),-75.2(\mathrm{q}, J=22 \mathrm{~Hz}, 1 \mathrm{~F})$. For 34: $\delta-58.6(\mathrm{~d}, J=12$ $\mathrm{Hz}, 3 \mathrm{~F}),-84.5(\mathrm{q}, J=12 \mathrm{~Hz}, 1 \mathrm{~F})$.
$\mathrm{CF}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{CFCu}(39,40) .{ }^{18} \quad \mathrm{CF}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{CFZnX}(9.5 \mathrm{mmol})$ and $\mathrm{CuBr}(1.43 \mathrm{~g}, 10 \mathrm{mmol})$ were stirred for 30 min at room temperature. ${ }^{19} \mathrm{~F}$ NMR (DMF) for 39: $\delta-53.6(\mathrm{~d}, J=22 \mathrm{~Hz}, 3 \mathrm{~F}),-59.0(\mathrm{q}, J=22$ $\mathrm{Hz}, 1 \mathrm{~F}$). For 40: $\delta-56.2(\mathrm{~d}, J=15 \mathrm{~Hz}, 3 \mathrm{~F}),-70.6(\mathrm{q}, J=15 \mathrm{~Hz}$, 1 F).

Thermal decomposition of 39 and 40 was carried out in an NMR tube with a J. Young valve. The tube was charged with 39 and 40 prepared under O_{2}-scrubbed Ar , degassed, sealed, and then heated at $50-60^{\circ} \mathrm{C} / 9$ days with periodic monitoring by ${ }^{19} \mathrm{~F}$ NMR. The minor decomposition product was $\mathrm{CF}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{CHF}$ and the major product was 45 .

The assignment of 45 was confirmed by the preparation of an authentic sample of dimer 45 by oxidation of 39 and 40 with dioxygen. After passage of a stream of O_{2} through a solution of 39 and $40(0.53 \mathrm{mmol})$ and purification by silica gel chromatography (hexane), 48.0 mg (49% yield) of 45 was isolated as a clear liquid ($R_{f}=0.3-0.6$). ${ }^{19} \mathrm{~F}$ NMR analysis revealed $16 \%(E)-\mathrm{CF}_{3}(\mathrm{Ph}) \mathrm{C}=\mathrm{CFBr}$ impurity. The remaining 84% of the solution was found to be three isomers of $\left[\mathrm{CF}_{3}(\mathrm{Ph}) \mathrm{C}=\mathrm{CF}\right]_{2}$ (45) in a $1: 1.1: 1.9$ ratio, assigned to the E, E, Z, Z, and E, Z isomers respectively. ${ }^{19} \mathrm{~F} \mathrm{NMR}$ for $(E, E)-45: \delta-61.3(\mathrm{t}, J=7-8 \mathrm{~Hz}, 3 \mathrm{~F}),-95.4$ (m, 1 F). For $(Z, Z)-45: \delta-60.3(\mathrm{dm}, J=20-25 \mathrm{~Hz}, 3 \mathrm{~F}),-99.6(\mathrm{~m}$, $1 \mathrm{~F})$. For $(E, Z)-45: \delta-60.7(\mathrm{dm}, J=22 \mathrm{~Hz}, 3 \mathrm{~F}),-62.0(\mathrm{~m}, 3 \mathrm{~F}),-94.3$ (dq, $J=40,10 \mathrm{~Hz}, 1 \mathrm{~F}$), $-96.9(\mathrm{~m}, 1 \mathrm{~F})$. Typical GC-MS spectrum for 45: 378 ($\mathrm{M}^{\bullet+}, 9$), 339 (8), 309 (100), 300 (42), 289 (37), 269 (32), 240 (83), 220 (46), 78 (16), 69 (5).

Low-Temperature ${ }^{19} \mathrm{~F}$ NMR Study of $\mathrm{CF}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{CClCu}(41,42)$. $\mathrm{CuBr}(25 \mathrm{mg}, 0.17 \mathrm{mmol})$ was added to a cooled $\left(-45^{\circ} \mathrm{C}\right) 0.25 \mathrm{M}$ solution of 41 and $42(0.5 \mathrm{~mL}, 0.13 \mathrm{mmol})$. The tube was shaken, quickly placed in a cooled $\left(-45^{\circ} \mathrm{C}\right)$ NMR probe, and then warmed to $0^{\circ} \mathrm{C}$ over a $30-\mathrm{min}$ period. The sample was then cooled to $-30^{\circ} \mathrm{C}$, and several drops of $1: 1 \mathrm{HCl}: \mathrm{Et}_{2} \mathrm{O}$ were added by pipet. The solution was allowed to warm to room temperature overnight. The ${ }^{19} \mathrm{~F}$ NMR spectrum of this sample was too complex to interpret. The mixture was extracted with pentane $(4 \times 1 \mathrm{~mL})$, and the pentane extracts were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 2 \mathrm{~mL})$. GC-MS analysis indicated small quantities of (E) - and $(Z)-\mathrm{CF}_{3}-$ $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{CHCl}$ and a major and minor isomer of 47: typical GC-MS $378\left(\mathrm{M}^{\bullet+}, 0.44\right), 376\left(\mathrm{M}^{\bullet+}, 1.8\right), 341(\mathrm{M}-\mathrm{Cl}, 13), 340(\mathrm{M}-\mathrm{HCl}, 4.4)$, 307 (M - $\mathrm{CF}_{3}, 16$), 301 (25), 298 (44), 272 (38), 251 (44), 203 (56), 202 (100), 193 (87), 159 (32), 126 (85), 101 (60), 77 (38), 69 (11), 51 (40); HRMS of mixture calc for $\mathrm{C}_{18} \mathrm{H}_{11}{ }^{35} \mathrm{ClF}_{6} 376.0453$, obs 376.0455 ; calc for $\mathrm{C}_{18} \mathrm{H}_{11}{ }^{37} \mathrm{ClF}_{6} 378.0424$, obs 378.0431 . In a separate experiment, $\mathrm{CF}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CF}_{3}$ was determined to be unreactive with $\mathrm{HCl} / \mathrm{Et}_{2} \mathrm{O}$ under the reaction conditions.
$\mathrm{CF}_{2} \mathrm{H}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CF}_{2} \mathrm{H}(54)$ and $\left[\mathrm{CF}_{2} \mathrm{H}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{Cl}_{4}\right.$ (55). $\mathrm{A}-20^{\circ} \mathrm{C}$ solution of $17(4.94 \mathrm{mmol})$ was treated with a catalytic amount of $\mathrm{CuBr}(0.1 \mathrm{~g}, \sim 15 \mathrm{~mol} \%)$ and warmed to room temperature over a $1-\mathrm{h}$ period. The DMF was removed by vacuum distillation (1 $\mathrm{mmHg} / 40^{\circ} \mathrm{C}$), the residue was dry-loaded onto a $150-\mathrm{g}$ silica gel column and eluted with hexane, then $8: 2$ hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and $200-\mathrm{mL}$ fractions were collected. Fractions were analyzed by TLC, and those fractions with similar spots were combined and the solvent was removed by rotary evaporation and brief exposure to vacuum ($1 \mathrm{mmHg} /$ room temperature/ 1 min). A minute amount ($<0.01 \mathrm{~g}$) of $\mathrm{CF}_{2} \mathrm{H}(\mathrm{Ph}) \mathrm{C}=\mathrm{CHBr}\left(R_{f}=0.50\right.$, hexane) isomers was isolated and identified by ${ }^{19} \mathrm{~F}$ NMR. A later fraction ($R_{f}=0.22$, hexane) contained $0.03 \mathrm{~g}(4 \%)$ of a $70: 30$ isomeric mixture of 54: GC-MS (1 peak) 304 (M•+, 53), 253 (21), 233 (76), 202 (100), 152 (29), 151 (32), 127 (70), 51 (31); ${ }^{1} \mathrm{H}$ NMR $\delta 7.68$ (m, 3 H), 7.40 (m, 3 H); ${ }^{19} \mathrm{~F}$ NMR $\delta-111.4$ (d, $J=56.2 \mathrm{~Hz}, 30 \%$), -111.8 (d, $J=56.2$ $\mathrm{Hz}, 70 \%$); ${ }^{13} \mathrm{C}$ NMR $\delta 157.3$ (m, 30\%), 156.7 (m, 70\%), 132.7-127.5 (Ar carbons), 117.6 (m), 113.3 ($\mathrm{t}, J=244 \mathrm{~Hz}, 30 \%$), 112.7 ($\mathrm{t}, J=243 \mathrm{~Hz}$, 70%). A broad fraction ($R_{f}=0.21-0.36,8: 2$ hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) contained $0.48 \mathrm{~g}(64 \%)$ of a mixture of isomers of 55 . The ${ }^{19} \mathrm{~F}$ NMR spectrum was complex, suggesting that more than one isomer was present. Fractional recrystallization techniques were unsuccessful: DIP-MS 609 ($\mathbf{M}+1$, 14), 608 ($\mathrm{M}^{\bullet+}, 40$), 557 ($\mathrm{M}-\mathrm{CF}_{2} \mathrm{H}, 11$), 537 (11), 506 (11), 486 (13), 479 (17), 466 (10), 435 (17), 416 (26), 365 (30), 357 (28), 251 (18), 215 (26), $202\left(\mathrm{C}_{16} \mathrm{H}_{25}{ }^{\circ+}, 100\right), 179$ (31), 151 (23), 141 (26), 127 (66), 109 (39), 91 (26), 77 (29), 57 (30), 51 (29); HRMS calc for $\mathrm{C}_{36} \mathrm{H}_{24} \mathrm{~F}_{8}$ 608.1750, obs 608.1723.

General Procedure for the Thermal Isomerization of Butatrienes. A triglyme solution of each butatriene isomer in an NMR tube was heated
in a $100-115^{\circ} \mathrm{C}$ oil bath. The thermal equilibrium reaction was judged complete when ${ }^{19} \mathrm{~F}$ NMR analysis of each solution revealed similar ratios of isomers.

Reaction of $(Z)-\mathrm{CF}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CF}_{3}$ (25) with Cy clopentadiene. A mixture of $25(87.8 \mathrm{mg}, 0.258 \mathrm{mmol})$, cyclopentadiene (1 mL), and toluene (0.5 mL) was stirred for 2 h at $45-50^{\circ} \mathrm{C}$, then additional cyclopentadiene (1 mL) was added, and the mixture was stirred for another 3 h at $45-55^{\circ} \mathrm{C}$. The solvent and excess mono- and dicyclopentadiene were removed at low pressure ($30^{\circ} \mathrm{C} / 0.5 \mathrm{mmHg}$) to afford 66.9 mg of (64%) white oil/solid. Silica gel chromatography did not resolve the product isomers ($R_{f}=0.2-0.35$ in hexane). The isomers were separated by preparative $\operatorname{HPLC}\left(83: 17 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}\right)$, and 10.5 mg of the first isomer to elute (${ }^{19} \mathrm{~F}$ NMR $\delta-61.0$ ($\mathrm{s}, 1 \mathrm{~F}$), -67.9 ($\mathrm{s}, 1 \mathrm{~F}$)) and 8.4 mg of the second isomer to elute (${ }^{19} \mathrm{~F}$ NMR $\delta-61.2(\mathrm{~s}, 1 \mathrm{~F}),-66.5$ (s, 1 F)) were obtained. Typical GC-MS: $406\left(\mathrm{M}^{\bullet+}, 2.2\right), 340(100)$, 321 (10), 271 (20), 251 (85), 202 (100), 126 (15), 77 (22), 66 (80), 51 (20). Data for first isomer of 48: HRMS calc for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~F}_{6} 406.1156$, obs 406.1161 ; FTIR 2961.2 (w), 1965.2 (vw), 1497.8 (m), 1304.8 (s), 1238.2 (s), 1174.7 (vs), 1130.8 (s); ${ }^{1} \mathrm{H}$ NMR $87.08-7.48$ (m, 10 H), 6.20 (dd, $J=5.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.01 (dd, $J=5.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.72 (bs, 1 H), 3.78 (bs, 1 H), 2.47 (d, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.83 (d, $J=9.4 \mathrm{~Hz}, 1$ H); ${ }^{13} \mathrm{C}$ NMR $\delta 199.8(\mathrm{q}, J=4.3 \mathrm{~Hz}), 139.7,134.9,137.1,129.9,128.8$, $128.5,127.9,127.8,127.2,126.2(\mathrm{q}, J=283 \mathrm{~Hz}), 123.4(\mathrm{q}, J=274 \mathrm{~Hz})$, $110.8,104.7(\mathrm{q}, J=34.5 \mathrm{~Hz}), 63.3(\mathrm{q}, J=25 \mathrm{~Hz}), 50.6,49.1$, 47.9. Data for second isomer: FTIR 3063.9 (w), 1965.4 (vw), 1304.1 (s), 1164.4 (vs), 1130.0 (vs); ${ }^{1} \mathrm{H}$ NMR $\delta 7.19-7.54(\mathrm{~m}, 10 \mathrm{H}), 6.49-6.41(\mathrm{~m}, 2 \mathrm{H})$, $3.71(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 200.2(q, J=3.8 \mathrm{~Hz}), 137.0,135.7,136.8,130.1,128.8,128.5$, $128.4,128.2,127.7,126.0(\mathrm{q}, J=282 \mathrm{~Hz}), 123.4(\mathrm{q}, J=275 \mathrm{~Hz}), 111.1$, 105.1 ($\mathrm{q}, J=34.7 \mathrm{~Hz}$), 63.9 (q, $J=25 \mathrm{~Hz}$), $51.3,50.2,48.8$ (bs).

Reaction of $(E)-\mathrm{CF}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CF}_{3}$ (26) with Cy clopentadiene. A mixture of $26(37.8 \mathrm{mg}, 0.111 \mathrm{mmol})$, cyclopentadiene (1 mL), and toluene (0.5 mL) was stirred for 3 h at $50-55^{\circ} \mathrm{C}$. The solvent and excess mono- and dicyclopentadiene were removed at low
pressure $\left(50^{\circ} \mathrm{C} / 0.5 \mathrm{mmHg}\right)$ to afford 33.7 mg (75%) of yellow oil/solid 49, 49. The mixture was analyzed by NMR, FTIR, and GC-MS and found to have similar characteristics to 48 and 48^{\prime} : FTIR of the mixture of isomers 3066.4 (w), $2962.8(\mathrm{~m}), 1964.1$ (vw), 1950.1 (vw), 1728.2 (w), 1497.9 (w), 1301.5 (m), 1261.6 (s), 1171.4 (vs), 1130.1 (vs), 1015.4 (s), 908.7 (m); ${ }^{19} \mathrm{~F}$ NMR (DMSO- d_{6}) $\delta-59.7$ ($\mathrm{s}, 1.3 \mathrm{~F}$), -60.1 ($\mathrm{s}, 1 \mathrm{~F}$), -65.6 $(\mathrm{s}, 1.3 \mathrm{~F}),-66.9(\mathrm{~s}, 1 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) $\delta 199.5$ ($\mathrm{q}, J=4-4.5$ $\mathrm{Hz}), 199.3(\mathrm{q}, J=4-4.5 \mathrm{~Hz})$, + others.

Reaction of (E) - and $(Z)-\mathrm{CF}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CF}_{3}(\mathbf{2 5}, 26)$ with Bromine. $\mathrm{A}-40^{\circ} \mathrm{C}$ solution of $25(0.3776 \mathrm{~g}, 1.11 \mathrm{mmol})$ in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $\mathrm{Br}_{2}(0.18 \mathrm{~g}, 1.1 \mathrm{mmol})$. The orange Br_{2} color did not disappear quickly at $-40^{\circ} \mathrm{C}$; however, after the dry ice/isopropyl alcohol bath was allowed to warm to room temperature over a $1.5-\mathrm{h}$ period, the solution was colorless. The solvent was removed by rotary evaporation and exposure to vacuum ($2 \mathrm{mmHg}, 25^{\circ} \mathrm{C}, 2 \mathrm{~min}$), leaving yellow, oil/solid 50 ($0.50 \mathrm{~g}, 91 \%$).

Isomer 26 was brominated in a similar fashion, although the bath temperature was raised to $-25^{\circ} \mathrm{C}$ for the less soluble E isomer. Treatment of $26(0.3177 \mathrm{~g}, 0.934 \mathrm{mmol})$ with $\mathrm{Br}_{2}(0.15 \mathrm{~g}, 0.94 \mathrm{mmol})$ in 25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-25^{\circ} \mathrm{C}$ gave 0.46 g (99\%) of yellow oil 50 after similar workup.

The NMR, GC-MS, and FTIR spectra of the two reaction mixtures were identical within the experimental error of the instruments. The product ratio was found to be 70:30 by GC-MS integration. ${ }^{19} \mathrm{~F}$ NMR was not useful for product identification as some of the singlets overlapped, although the reaction mixtures had identical patterns (small impurities including starting butatriene were also present): FTIR 3066.2 (w), 1969.6 (vw), 1953.1 (vw), 1898.3 (vw), 1880.4 (vw), 1495.3 (m), 1299.9 (vs), 1239.5 (vs), 1173.5 (vs), 698.0 (vs); GC-MS $500\left(\mathrm{M}^{\bullet+}, 0.3\right), 421$ (18), 419 (17), 340 (100), 339 (43), 271 (45), 270 (54), 251 (47), 202 (80); ${ }^{1} \mathrm{H}$ NMR $\delta 7.23-7.79(\mathrm{~m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 201.5(\mathrm{q}, J=4 \mathrm{~Hz}, 30 \%), 200.4$ ($\mathrm{q}, J=3.6 \mathrm{~Hz}, 70 \%$), + others.

Acknowledgment. We thank the National Science Foundation for support of this work and a graduate fellowship (P.M.).

[^0]: (1) Iyoda, M.; Tanaka, S.; Otani, H.; Nose, M.; Oda, M. J. Am. Chem. Soc. 1988, $110,8494-8500$.
 (2) Ziegler, C. B., Jr. Tetrahedron Lett. 1988, 29, 411-414.
 (3) Ziegler, C. B., Jr.; Harris, S. M.; Baldwin, J. E. J. Org. Chem. 1987, 52, 443-446.
 (4) Ziegler, C. B., Jr. J. Org. Chem. 1990, 55, 2983-2986.
 (5) Kishigami, S.; Tanaka, K;; Toda, F. Chem. Lett. 1990, 1877-1880.
 (6) Kawase, T.; Muro, S.; Kurata, H.; Oda, M. J. Chem. Soc., Chem. Commun. 1992, 778-779.
 (7) Macomber, R. S.; Hemling, T. C. Isr. J. Chem. 1985, 26, 136-139. Stang, P. J.; Datta, A. K. Organometallics 1989, 8, 1024-1029; Joshi, K. K. J. Chem. Soc. A 1966, 594-597, 598-599. Nakamura, A.; Kim, P.-J.; Hagihara, N. Bull. Chem. Soc. Jpr. 1964, 37, 292.
 (8) Biomedicinal Aspects of Fluorine Chemistry; Filler, R., Kobayashi, Y., Eds.; Elsevier Biomedical Press and Kodansha LTD: Amsterdam, 1982.
 (9) Emsley, J. New Sci. 1989, 122, 22 April, 46-50.
 (10) Birum, G. H.; Matthews, C. N. J. Org. Chem. 1967, 32, 3554.
 (11) Buddrus, J.; Bauer, H.; Herzog, H. Chem. Ber. 1988, 121, 295 and references therein.
 (12) Martin, E. L.; Sharkey W. H. J. Am. Chem. Soc. 1959, 81, 5256.
 (13) Warrener, R. N.; Nunn, E. E.; Paddon-Row, M. N. Tetrahedron Lett. 1976, 2639.
 (14) Hartzler, H. D. J. Am. Chem. Soc. 1971, 93, 4527.
 (15) Hartgraves, G. H. Ph.D. Thesis, University of Iowa, 1988.

[^1]: (16) Hansen, S. W.; Spawn, T. S.; Burton, D. J. J. Fluorine Chem. 1987, 35, 415 .
 (17) Burton, D. J.; Hansen, S. W. J. Fluorine Chem. 1986, 3l, 461.
 (18) Burton, D. J.; Hansen, S. W. J. Am. Chem. Soc. 1986, IO8, 4229.
 (19) Morken, P. A; Baenziger, N. C.; Burton, D. J.; Bachand, P. C.; Davis, C. R.; Pedersen, S. D.; Hansen, S. W. J. Chem. Soc., Chem. Commun. 1991, 566-567.
 (20) Ramirez, F.; Desai, N. B.; McKelvie, N. J. Am. Chem. Soc. 1962, 84, 1745.
 (21) $\mathrm{RCHO} \rightarrow \mathrm{RCF}=\mathrm{CBr}_{2}$ has been reported; see: Gajewsk;, R. P.; Jackson, J. L.; Jones, N. D.; Swartzendruber, J. K.; Deeter, J. B. J. Org. Chem. 1989, 54, 3311-3317.
 (22) Atkins, P. J.; Gold, V.; Wassef, W. N. J. Chem. Soc., Perkin Trans. 2 1984, 1247-1251 (this report does not include data nor a procedure for 10).
 (23) Vanderhaar, R. W.; Burton, D. J.; Naae, D. G. J. Fluorine Chem. 1971-1972, l, 381-383.
 (24) There has been one report of the Appel chemistry of CClBr_{3}, alt hough there was no experimental detail or indication of purity, selectivity, or yield: Rabinowitz, R. U.S. Patent 3225 106, 1965; Chem. Abstr. 1966, 64, 8078h.

[^2]: (29) Bothner-By, A. A.; Castellano, S.; Gunther, H. J. Am. Chem. Soc.

[^3]: (32) To be published in Acta Crystallogr., Sect. C.
 (33) Lambert, J. B.; Shurvell, H. F.; Lightner, D. A.; Cooks, R. G. Introduction to Organic Spectroscopy; Macmillan: New York, 1987.
 (34) Kuhn, R.; Schulz, B. Chem. Ber. 1965, 98, 3218-3227.
 (35) For a recent example, see: Creary, X.; Wang, Y.-Z. J. Org. Chem. 1992, 57, 4761-4765.

[^4]: (52) Kesling, H. S., Jr. Ph.D. Thesis, University of Iowa, 1975.
 (53) Tatlow, J. C. J. Chem. Soc. 1961, 808.
 (54) Dishart, K. T.; Levine, R. J. Am. Chem. Soc. 1956, 78, 2268-2270.

